Restricted Boltzmann machines in quantum physics

A type of stochastic neural network called a restricted Boltzmann machine has been widely used in artificial intelligence applications for decades. They are now finding new life in the simulation of complex wavefunctions in quantum many-body physics.

[1]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[3]  Vogel,et al.  Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.

[4]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[5]  Stefan Rommer,et al.  Thermodynamic limit of the density matrix renormalization for the spin-1 Heisenberg chain , 1995 .

[6]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[7]  S. Sorella GREEN FUNCTION MONTE CARLO WITH STOCHASTIC RECONFIGURATION , 1998, cond-mat/9803107.

[8]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[9]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[10]  F. Schmidt-Kaler,et al.  Bell states of atoms with ultralong lifetimes and their tomographic state analysis. , 2004, Physical review letters.

[11]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[12]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[13]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[14]  Nicolas Le Roux,et al.  Representational Power of Restricted Boltzmann Machines and Deep Belief Networks , 2008, Neural Computation.

[15]  Ruslan Salakhutdinov,et al.  Learning Deep Generative Models , 2009 .

[16]  A. Sandvik Computational Studies of Quantum Spin Systems , 2010, 1101.3281.

[17]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[18]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[19]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[20]  Matthew B Hastings,et al.  Measuring Renyi entanglement entropy in quantum Monte Carlo simulations. , 2010, Physical review letters.

[21]  Lu-Ming Duan,et al.  Quantum simulation of frustrated Ising spins with trapped ions , 2010, Nature.

[22]  J. Cirac,et al.  Simulating two- and three-dimensional frustrated quantum systems with string-bond states , 2009, 0908.4036.

[23]  Michele Fabrizio,et al.  Localization and Glassy Dynamics Of Many-Body Quantum Systems , 2011, Scientific Reports.

[24]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[25]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[26]  Roger G. Melko,et al.  Learning Thermodynamics with Boltzmann Machines , 2016, ArXiv.

[27]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[28]  F. Becca Quantum Monte Carlo Approaches for Correlated Systems , 2017 .

[29]  M. Heyl,et al.  Quantum dynamics in transverse-field Ising models from classical networks , 2017, 1707.06656.

[30]  Dong-Ling Deng,et al.  Machine Learning Topological States , 2016, 1609.09060.

[31]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[32]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[33]  H. Saito Solving the Bose–Hubbard Model with Machine Learning , 2017, 1707.09723.

[34]  S. R. Clark,et al.  Unifying neural-network quantum states and correlator product states via tensor networks , 2017, 1710.03545.

[35]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[36]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[37]  Andrew S. Darmawan,et al.  Restricted Boltzmann machine learning for solving strongly correlated quantum systems , 2017, 1709.06475.

[38]  Raphael Kaubruegger,et al.  Chiral topological phases from artificial neural networks , 2017, 1710.04713.

[39]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[40]  R. Zecchina,et al.  Inverse statistical problems: from the inverse Ising problem to data science , 2017, 1702.01522.

[41]  Yusuke Nomura,et al.  Constructing exact representations of quantum many-body systems with deep neural networks , 2018, Nature Communications.

[42]  Simone Severini,et al.  Learning hard quantum distributions with variational autoencoders , 2017, npj Quantum Information.

[43]  Giacomo Torlai,et al.  Latent Space Purification via Neural Density Operators. , 2018, Physical review letters.

[44]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.

[45]  J. Chen,et al.  Equivalence of restricted Boltzmann machines and tensor network states , 2017, 1701.04831.

[46]  T. Gasenzer,et al.  Quenches near Ising quantum criticality as a challenge for artificial neural networks , 2018, Physical Review B.

[47]  B. Terhal Quantum supremacy, here we come , 2018 .

[48]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[49]  Peiyuan Teng Machine-learning quantum mechanics: Solving quantum mechanics problems using radial basis function networks , 2017, Physical Review E.

[50]  Hiroki Saito,et al.  Method to Solve Quantum Few-Body Problems with Artificial Neural Networks , 2018, Journal of the Physical Society of Japan.

[51]  M. W. Johnson,et al.  Phase transitions in a programmable quantum spin glass simulator , 2018, Science.

[52]  J. Cirac,et al.  Neural-Network Quantum States, String-Bond States, and Chiral Topological States , 2017, 1710.04045.

[53]  G. Carleo,et al.  Symmetries and Many-Body Excitations with Neural-Network Quantum States. , 2018, Physical review letters.

[54]  Raphael Kaubruegger,et al.  Generalized transfer matrix states from artificial neural networks , 2018, Physical Review B.

[55]  E Weinan,et al.  Solving many-electron Schrödinger equation using deep neural networks , 2018, J. Comput. Phys..

[56]  Roger G. Melko,et al.  Reconstructing quantum states with generative models , 2018, Nature Machine Intelligence.

[57]  Amnon Shashua,et al.  Deep autoregressive models for the efficient variational simulation of many-body quantum systems , 2019, Physical review letters.