Structural Basis for the Autoinhibition of c-Abl Tyrosine Kinase

[1]  G. Daley,et al.  Mechanisms of Autoinhibition and STI-571/Imatinib Resistance Revealed by Mutagenesis of BCR-ABL , 2003, Cell.

[2]  G. Superti-Furga,et al.  A Myristoyl/Phosphotyrosine Switch Regulates c-Abl , 2003, Cell.

[3]  J. Kuriyan,et al.  Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. , 2002, Cancer research.

[4]  J. Kuriyan,et al.  The Conformational Plasticity of Protein Kinases , 2002, Cell.

[5]  C. Sawyers Disabling Abl-perspectives on Abl kinase regulation and cancer therapeutics. , 2002, Cancer cell.

[6]  G. Superti-Furga,et al.  Autoinhibition of c-Abl , 2002, Cell.

[7]  R. A. Etten,et al.  Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain , 2001, Oncogene.

[8]  T. Hunter,et al.  Inhibition of c-Abl Tyrosine Kinase Activity by Filamentous Actin* , 2001, The Journal of Biological Chemistry.

[9]  John Kuriyan,et al.  Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). , 2001, Cancer research.

[10]  Giulio Superti-Furga,et al.  Dynamic Coupling between the SH2 and SH3 Domains of c-Src and Hck Underlies Their Inactivation by C-Terminal Tyrosine Phosphorylation , 2001, Cell.

[11]  R. V. van Etten,et al.  c-Abl Has High Intrinsic Tyrosine Kinase Activity That Is Stimulated by Mutation of the Src Homology 3 Domain and by Autophosphorylation at Two Distinct Regulatory Tyrosines* , 2000, The Journal of Biological Chemistry.

[12]  H. D. Showalter,et al.  Biochemical and cellular effects of c-Src kinase-selective pyrido[2, 3-d]pyrimidine tyrosine kinase inhibitors. , 2000, Biochemical pharmacology.

[13]  P. Seeburg,et al.  Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. , 2000, Science.

[14]  S. Taylor,et al.  Mobilization of the A-kinase N-myristate through an isoform-specific intermolecular switch. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Cowburn,et al.  Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in Abl SH(32). , 1999, Biochemistry.

[16]  J. Kuriyan,et al.  Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. , 1999, Molecular cell.

[17]  S. Harrison,et al.  Crystal structures of c-Src reveal features of its autoinhibitory mechanism. , 1999, Molecular cell.

[18]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[19]  G. Superti-Furga,et al.  An intramolecular SH3-domain interaction regulates c-Abl activity , 1998, Nature Genetics.

[20]  G. Superti-Furga,et al.  The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. , 1997, Journal of molecular biology.

[21]  Jürg Zimmermann,et al.  Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives , 1997 .

[22]  Hiroto Yamaguchi,et al.  Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation , 1996, Nature.

[23]  T. Roberts,et al.  Intramolecular interactions of the regulatory domains of the Bcr-Abl kinase reveal a novel control mechanism. , 1996, Structure.

[24]  Jürg Zimmermann,et al.  Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells , 1996, Nature Medicine.

[25]  Jean-Paul Renaud,et al.  Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid , 1995, Nature.

[26]  G. Superti-Furga,et al.  Structural requirements for the efficient regulation of the Src protein tyrosine kinase by Csk. , 1995, Oncogene.

[27]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[28]  Giulio Superti‐Furga,et al.  Structure‐function relationships in Src family and related protein tyrosine kinases , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[29]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[30]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[31]  N. Rosenberg,et al.  Oncogenic activation of c-ABL by mutation within its last exon , 1993, Molecular and cellular biology.

[32]  N. Rosenberg,et al.  En bloc substitution of the Src homology region 2 domain activates the transforming potential of the c-Abl protein tyrosine kinase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[34]  D. Baltimore,et al.  N‐terminal mutations activate the leukemogenic potential of the myristoylated form of c‐abl. , 1989, The EMBO journal.

[35]  J. Wang,et al.  Deletion of an N‐terminal regulatory domain of the c‐abl tyrosine kinase activates its oncogenic potential. , 1989, The EMBO journal.

[36]  R. V. van Etten,et al.  Cycling, stressed-out and nervous: cellular functions of c-Abl. , 1999, Trends in cell biology.

[37]  Sheila M. Thomas,et al.  Cellular functions regulated by Src family kinases. , 1997, Annual review of cell and developmental biology.

[38]  D Cowburn,et al.  Modular peptide recognition domains in eukaryotic signaling. , 1997, Annual review of biophysics and biomolecular structure.

[39]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[40]  P. Chambon,et al.  Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. , 1995, Nature.

[41]  H. Lipson Crystal Structures , 1949, Nature.