Upper-mantle origin of the Yellowstone hotspot

Fundamental features of the geology and tectonic setting of the northeast-propagating Yellowstone hotspot are not explained by a simple deep-mantle plume hypothesis and, within that framework, must be attributed to coincidence or be explained by auxiliary hypotheses. These features include the persistence of basaltic magmatism along the hotspot track, the origin of the hotspot during a regional middle Miocene tectonic reorganization, a similar and coeval zone of northwestward magmatic propagation, the occurrence of both zones of magmatic propagation along a first-order tectonic boundary, and control of the hotspot track by preexisting structures. Seismic imaging provides no evidence for, and several contraindications of, a vertically extensive plume-like structure beneath Yellowstone or a broad trailing plume head beneath the eastern Snake River Plain. The high helium isotope ratios observed at Yellowstone and other hotspots are commonly assumed to arise from the lower mantle, but upper-mantle processes can explain the observations. The available evidence thus renders an upper-mantle origin for the Yellowstone system the preferred model; there is no evidence that the system extends deeper than ∼200 km, and some evidence that it does not. A model whereby the Yellowstone system reflects feedback between upper-mantle convection and regional lithospheric tectonics is able to explain the observations better than a deep-mantle plume hypothesis.

[1]  D. Loper 2nd SEDI Symposium Held , 1991 .

[2]  S. Epstein,et al.  NOBLE GASES IN DIAMONDS: OCCURRENCES OF SOLARLIKE HELIUM AND NEON , 1987 .

[3]  W. Hackett,et al.  Extension of the Yellowstone plateau, eastern Snake River Plain, and Owyhee plateau , 1990 .

[4]  J. Stock,et al.  Pacific-North America Plate Tectonics of the Neogene Southwestern United States: An Update , 1998 .

[5]  W. Bradley Myers,et al.  Cenozoic tectonics of the western United States , 1966 .

[6]  D. Draper Late cenozoic bimodal magmatism in the northern Basin and Range Province of southeastern Oregon , 1991 .

[7]  E. Anders,et al.  Primordial noble gases in separated meteoritic minerals—I , 1970 .

[8]  Kevin Burke,et al.  Hot spots on the Earth's surface , 1976 .

[9]  A. Zindler,et al.  Helium: problematic primordial signals , 1986 .

[10]  E. Humphreys,et al.  Physical state of the western U.S. upper mantle , 1994 .

[11]  W. J. Morgan,et al.  Deep Mantle Convection Plumes and Plate Motions , 1972 .

[12]  J. R. Evans,et al.  Teleseismic velocity tomography using the ACH method: theory and application to continental-scale studies , 1993 .

[13]  George Helffrich,et al.  Phase transition Clapeyron slopes and transition zone seismic discontinuity topography , 1994 .

[14]  Determination of structure coefficients from splitting matrices , 2000 .

[15]  M. Streck,et al.  Enrichment of basalt and mixing of dacite in the rootzone of a large rhyolite chamber: inclusions and pumices from the Rattlesnake Tuff, Oregon , 1999 .

[16]  D. Anderson The helium paradoxes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Anderson A model to explain the various paradoxes associated with mantle noble gas geochemistry. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. L. Anderson,et al.  Extensional tectonics and global volcanism , 2000 .

[19]  J. R. Evans Compressional wave velocity structure of the upper 350 km under the Eastern Snake River Plain near Rexburg, Idaho , 1982 .

[20]  T. Atwater Implications of Plate Tectonics for the Cenozoic Tectonic Evolution of Western North America , 1970 .

[21]  R. Yeats,et al.  Post-Laramide geology of the U.S. Cordilleran region , 1992 .

[22]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .

[23]  George Igarashi,et al.  The primordial noble gases in the Earth: a key constraint on Earth evolution models , 2000 .

[24]  M. D. Kleinkopf,et al.  4: Regional magnetic patterns in part of the Cordillera in the Western United States , 1978 .

[25]  N. Macleod,et al.  Geothermal significance of eastward increase in age of upper Cenozoic rhyolitic domes in southeastern Oregon , 1975 .

[26]  W. Dickinson OVERVIEW: Tectonic implications of Cenozoic volcanism in coastal California , 1997 .

[27]  G. Foulger,et al.  Is Iceland underlain by a plume in the lower mantle? Seismology and helium isotopes , 2001 .

[28]  W. J. Morgan,et al.  Convection Plumes in the Lower Mantle , 1971, Nature.

[29]  L. Fenoglio-Marc Analysis and representation of regional sea-level variability from altimetry and atmospheric–oceanic data , 2001 .

[30]  E. Humphreys,et al.  Western U.S. upper mantle structure , 1994 .

[31]  E. Humphreys,et al.  Upper mantle P wave velocity structure of the eastern Snake River Plain and its relationship to geodynamic models of the region , 1997 .

[32]  Robert A. Duncan,et al.  A captured island chain in the coast range of Oregon and Washington , 1982 .

[33]  Robert L. Christiansen,et al.  The Quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana , 2001 .

[34]  Mark A. Richards,et al.  Origin of the Columbia Plateau and Snake River plain: Deflection of the Yellowstone plume , 1993 .

[35]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[36]  B. Wernicke,et al.  Cenozoic Tectonism in the Central Basin and Range: Motion of the Sierran-Great Valley Block , 1998 .

[37]  H. M. Iyer,et al.  Teleseismic residuals at the Lasa-USGS Extended Array and their interpretation in terms of crust and upper-mantle structure , 1972 .

[38]  Kenneth G. Dueker,et al.  Beneath Yellowstone: Evaluating Plume and Nonplume Models Using Teleseismic Images of the Upper Mantle , 2000 .

[39]  M. Richards,et al.  Hotspots, mantle plumes, flood basalts, and true polar wander , 1991 .

[40]  Charles Anderson,et al.  Yellowstone Convection Plume and Break-up of the Western United States , 1973, Nature.

[41]  D. L. Anderson The Statistics and Distribution of Helium in the Mantle , 2000 .

[42]  D. L. Anderson The Statistics of Helium Isotopes Along the Global Spreading Ridge System and the Central Limit Theorem , 2000 .

[43]  P. Lipman,et al.  A Discussion on volcanism and the structure of the Earth - Cenozoic volcanism and plate-tectonic evolution of the Western United States. II. Late cenozoic , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[44]  M. Moreira,et al.  Noble gas constraints on degassing processes , 2000 .

[45]  T. Parsons,et al.  More than one way to stretch: a tectonic model for extension along the plume track of the Yellowstone hotspot and adjacent Basin and Range Province , 1998 .

[46]  D. Jurdy,et al.  Subducted lithosphere, hotspots, and the geoid , 1980 .

[47]  J. Schilling Iceland Mantle Plume: Geochemical Study of Reykjanes Ridge , 1973, Nature.

[48]  Robert B. Smith,et al.  The Yellowstone hotspot , 1994 .

[49]  Donald J. DePaolo,et al.  HELIUM AND NEON ISOTOPES IN THE IMNAHA BASALT, COLUMBIA RIVER BASALT GROUP: EVIDENCE FOR A YELLOWSTONE PLUME SOURCE , 1997 .

[50]  H. M. Iyer,et al.  Magma Beneath Yellowstone National park , 1975, Science.

[51]  K. Grönvold,et al.  Extreme 3He/4He ratios in northwest Iceland: constraining the common component in mantle plumes , 1999 .

[52]  B. M. Kennedy,et al.  Intensive sampling of noble gases in fluids at Yellowstone: I. Early overview of the data; regional patterns , 1985 .

[53]  B. Hanan,et al.  The dynamic evolution of the Iceland mantle plume: the lead isotope perspective , 1997 .

[54]  E. D. Jackson,et al.  Linear island chains in the Pacific: Result of thermal plumes or gravitational anchors? , 1973 .

[55]  R. D. Lawrence Strike-slip faulting terminates the Basin and Range province in Oregon , 1976 .

[56]  A. Sheehan,et al.  Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track , 1997 .

[57]  M. Bott Plate tectonic evolution of the ICelandic Transverse Ridge and adjacent regions , 1985 .

[58]  B. Hager,et al.  — a H 03 Dynamically Supported Geoid Highs over Hotspots : Observation and Theory , 2008 .

[59]  W. J. Morgan,et al.  The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper , 2000 .

[60]  A. Einstein,et al.  Deep Mantle Plumes and Geoscience Vision , 1998 .

[61]  John W. Geissman,et al.  Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot , 1989 .

[62]  Guust Nolet,et al.  Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle , 2001 .

[63]  J. Woodhouse,et al.  Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland. , 1999, Science.

[64]  J. Lupton,et al.  Helium isotope ratios in Yellowstone and Lassen Park volcanic gases , 1978 .

[65]  É. Beucler,et al.  The Snake River Plain Experiment revisited. Relationships between a Farallon plate fragment and the transition zone , 1999 .

[66]  Kenneth L. Pierce,et al.  The track of the Yellowstone hot spot--volcanism, faulting and uplift , 1990 .

[67]  E. Hearn,et al.  Coupled variations in helium isotopes and fluid chemistry: Shoshone Geyser Basin, Yellowstone National Park , 1990 .

[68]  R. Saltus,et al.  Yellowstone plume head; postulated tectonic relations to the Vancouver Slab, continental boundaries, and climate , 2000 .

[69]  G. W. Walker Revisions to the Cenozoic stratigraphy of Harney Basin , 1979 .

[70]  U. Christensen,et al.  Three-dimensional modeling of plume-lithosphere interaction , 1994 .

[71]  Robert B. Smith,et al.  Yellowstone Hot Spot New Magnetic and Seismic Evidence , 1974 .

[72]  M. A. Morrison,et al.  Alkaline hybrid mafic magmas of the Yampa area, NW Colorado, and their relationship to the Yellowstone mantle plume and lithospheric mantle domains , 1991 .

[73]  J. Schilling Iceland Mantle Plume , 1973, Nature.

[74]  J. Wilson,et al.  Evidence from Islands on the Spreading of Ocean Floors , 1963, Nature.

[75]  H. M. Iyer,et al.  A deep low-velocity body under the Yellowstone caldera, Wyoming: Delineation using teleseismic P-wave residuals and tectonic interpretation , 1981 .

[76]  D. L. Anderson,et al.  Edge-driven convection , 1998 .

[77]  N. Sleep,et al.  Mantle plume influence on the Neogene uplift and extension of the U.S. western Cordillera , 1994 .

[78]  M. Kurz,et al.  Helium Isotopic Signatures of Icelandic Alkaline Lavas , 2001 .

[79]  R. Fournier Geochemistry and Dynamics of the Yellowstone National Park Hydrothermal System , 1989 .

[80]  D. Milbert GEOID90: A high‐resolution geoid for the United States , 1991, Eos, Transactions American Geophysical Union.

[81]  D. Helmberger Long-period body-wave propagation from 4° to 13° , 1972, Bulletin of the Seismological Society of America.

[82]  W. J. Morgan,et al.  Plate Motions and Deep Mantle Convection , 1972 .

[83]  E. Humphreys,et al.  Upper-mantle velocity structure of the Great Basin , 1990 .

[84]  E. McKee,et al.  13: Late Cenozoic volcanic and tectonic evolution of the Great Basin and Columbia Intermontane regions , 1978 .

[85]  Barbara Romanowicz,et al.  The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms , 2000 .

[86]  Keiiti Aki,et al.  Determination of the three‐dimensional seismic structure of the lithosphere , 1977 .

[87]  S. Hart,et al.  Mantle Plumes and Entrainment: Isotopic Evidence , 1992, Science.