A phylogenetic perspective on the distribution of plant diversity

Phylogenetic studies are revealing that major ecological niches are more conserved through evolutionary history than expected, implying that adaptations to major climate changes have not readily been accomplished in all lineages. Phylogenetic niche conservatism has important consequences for the assembly of both local communities and the regional species pools from which these are drawn. If corridors for movement are available, newly emerging environments will tend to be filled by species that filter in from areas in which the relevant adaptations have already evolved, as opposed to being filled by in situ evolution of these adaptations. Examples include intercontinental disjunctions of tropical plants, the spread of plant lineages around the Northern Hemisphere after the evolution of cold tolerance, and the radiation of northern alpine plants into the Andes. These observations highlight the role of phylogenetic knowledge and historical biogeography in explanations of global biodiversity patterns. They also have implications for the future of biodiversity.

[1]  R. Ricklefs,et al.  Large-scale processes and the Asian bias in species diversity of temperate plants , 2000, Nature.

[2]  J. Cavender-Bares,et al.  Integrating micro- and macroevolutionary processes in community ecology , 2003 .

[3]  J. Wen Evolution of Eastern Asian and Eastern North American Disjunct Distributions in Flowering Plants , 1999 .

[4]  R. Erkens,et al.  Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  A. Prinzing The niche of higher plants: evidence for phylogenetic conservatism , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  M. Donoghue,et al.  Correlates of Diversification in the Plant Clade Dipsacales: Geographic Movement and Evolutionary Innovations , 2007, The American Naturalist.

[7]  C. Körner The use of 'altitude' in ecological research. , 2007, Trends in ecology & evolution.

[8]  Campbell O. Webb,et al.  Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees , 2000, The American Naturalist.

[9]  Campbell O. Webb,et al.  A LIKELIHOOD FRAMEWORK FOR INFERRING THE EVOLUTION OF GEOGRAPHIC RANGE ON PHYLOGENETIC TREES , 2005, Evolution; international journal of organic evolution.

[10]  Joel Cracraft,et al.  Assembling the tree of life , 2004 .

[11]  Richard Grenyer,et al.  Preserving the evolutionary potential of floras in biodiversity hotspots , 2007, Nature.

[12]  Ernst Mayr,et al.  Principles of systematic zoology , 1969 .

[13]  R. Ree,et al.  Evidence for a Time‐Integrated Species‐Area Effect on the Latitudinal Gradient in Tree Diversity , 2006, The American Naturalist.

[14]  A. Valiente‐Banuet,et al.  Facilitation can increase the phylogenetic diversity of plant communities. , 2007, Ecology letters.

[15]  Campbell O. Webb,et al.  Phylogenies and Community Ecology , 2002 .

[16]  H. Linder,et al.  Evolution of diversity: the Cape flora. , 2005, Trends in plant science.

[17]  S. Gould,et al.  The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  M. Donoghue,et al.  Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians , 2005 .

[19]  A. Chanderbali,et al.  Phylogeny and Historical Biogeography of Lauraceae: Evidence from the Chloroplast and Nuclear Genomes , 2001 .

[20]  M. Donoghue,et al.  Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Donoghue,et al.  The relevance of phylogeny to studies of global change. , 2007, Trends in ecology & evolution.

[22]  W. Krutzsch Paleogeography and historical phytogeography (paleochorology) in the Neophyticum , 1989, Plant Systematics and Evolution.

[23]  M. Donoghue,et al.  Homoplasy and Developmental Constraint: A Model and an Example from Plants1 , 2000 .

[24]  John A. Wiens,et al.  Species diversity in ecological communities: edited by Robert E. Ricklefs and Dolph Schluter University of Chicago Press, 1993. $105.00 hbk, $35.00 pbk (414 pages) ISBN 0 226 71822 0/0 226 71823 9 , 1994 .

[25]  Campbell O. Webb,et al.  Explosive Radiation of Malpighiales Supports a Mid‐Cretaceous Origin of Modern Tropical Rain Forests , 2005, The American Naturalist.

[26]  R. Ricklefs,et al.  SPECIES RICHNESS WITHIN FAMILIES OF FLOWERING PLANTS , 1994, Evolution; international journal of organic evolution.

[27]  W. Larcher,et al.  Frost Survival of Plants: Responses and Adaptation to Freezing Stress , 1987 .

[28]  Jeannine Cavender-Bares,et al.  Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. , 2006, Ecology.

[29]  C. Herrera,et al.  Historical Effects and Sorting Processes as Explanations for Contemporary Ecological Patterns: Character Syndromes in Mediterranean Woody Plants , 1992, The American Naturalist.

[30]  Brian D. Farrell,et al.  Diversification at the Insect-Plant Interface , 1992 .

[31]  G. Ledyard Stebbins,et al.  Flowering Plants: Evolution Above the Species Level , 1975 .

[32]  R. Ricklefs,et al.  A Comparison of the Taxonomic Richness of Vascular Plants in China and the United States , 1999, The American Naturalist.

[33]  M. Pagel,et al.  The comparative method in evolutionary biology , 1991 .

[34]  M. Donoghue,et al.  Historical biogeography, ecology and species richness. , 2004, Trends in ecology & evolution.

[35]  T. Koyama Evolution and classification of flowering plants , 2008, Brittonia.

[36]  J. Wiens,et al.  WHY DOES A TRAIT EVOLVE MULTIPLE TIMES WITHIN A CLADE? REPEATED EVOLUTION OF SNAKELIKE BODY FORM IN SQUAMATE REPTILES , 2006, Evolution; international journal of organic evolution.

[37]  N. Pierce Origin of Species , 1914, Nature.

[38]  D. Ackerly,et al.  Adaptation, Niche Conservatism, and Convergence: Comparative Studies of Leaf Evolution in the California Chaparral , 2004, The American Naturalist.

[39]  THE DIVERSIFICATION OF HALENIA (GENTIANACEAE): ECOLOGICAL OPPORTUNITY VERSUS KEY INNOVATION , 2003, Evolution; international journal of organic evolution.

[40]  Brian K. Hall,et al.  Homology: The hierarchical basis of comparative biology , 1994 .

[41]  M. Donoghue,et al.  Patterns in the assembly of temperate forests around the Northern Hemisphere. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  J. W. Valentine,et al.  Out of the Tropics: Evolutionary Dynamics of the Latitudinal Diversity Gradient , 2006, Science.

[43]  Brian R. Moore,et al.  SYMMETREE: whole-tree analysis of differential diversification rates , 2005, Bioinform..

[44]  C. Graham,et al.  Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology , 2005 .

[45]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[46]  D. Ackerly Community Assembly, Niche Conservatism, and Adaptive Evolution in Changing Environments , 2003, International Journal of Plant Sciences.

[47]  R. Eastwood,et al.  Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes , 2006, Proceedings of the National Academy of Sciences.

[48]  M. Donoghue,et al.  The Evolution of Reproductive Characters in Dipsacales , 2003, International Journal of Plant Sciences.

[49]  R. Abbott,et al.  The origin and evolution of tertiary relict floras , 2002 .

[50]  Campbell O. Webb,et al.  Bioinformatics Applications Note Phylocom: Software for the Analysis of Phylogenetic Community Structure and Trait Evolution , 2022 .

[51]  R. Ricklefs,et al.  Estimating diversification rates from phylogenetic information. , 2007, Trends in ecology & evolution.

[52]  Campbell O. Webb,et al.  Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. , 2006, Ecology.

[53]  J. Kadereit,et al.  The phylogeny of Gentianella (Gentianaceae) and its colonization of the southern hemisphere as revealed by nuclear and chloroplast DNA sequence variation , 2001 .

[54]  D. I. Axelrod Evolution and Biogeography of Madrean-Tethyan Sclerophyll Vegetation , 1975 .

[55]  C. Bell,et al.  High‐Latitude Tertiary Migrations of an Exclusively Tropical Clade: Evidence from Malpighiaceae , 2004, International Journal of Plant Sciences.

[56]  R. Ricklefs,et al.  REGIONAL DIFFERENCES IN RATES OF PLANT SPECIATION AND MOLECULAREVOLUTION: A COMPARISON BETWEEN EASTERN ASIA AND EASTERN NORTH AMERICA , 2004, Evolution; international journal of organic evolution.

[57]  J. Slingsby,et al.  Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. , 2007, The American naturalist.

[58]  M. Donoghue,et al.  PATTERNS OF VARIATION IN LEVELS OF HOMOPLASY , 1989, Evolution; international journal of organic evolution.

[59]  V. Sánchez‐Cordero,et al.  Conservatism of ecological niches in evolutionary time , 1999, Science.

[60]  J. Wiens SPECIATION AND ECOLOGY REVISITED: PHYLOGENETIC NICHE CONSERVATISM AND THE ORIGIN OF SPECIES , 2004, Evolution; international journal of organic evolution.

[61]  Richard E. Glor,et al.  Niche lability in the evolution of a Caribbean lizard community , 2003, Nature.

[62]  Brian J Enquist,et al.  The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. , 2007, Ecology.

[63]  D. Faith Conservation evaluation and phylogenetic diversity , 1992 .

[64]  Robert K. Colwell,et al.  Species Richness and Evolutionary Niche Dynamics: A Spatial Pattern–Oriented Simulation Experiment , 2007, The American Naturalist.

[65]  D. Janzen Why Mountain Passes are Higher in the Tropics , 1967, The American Naturalist.

[66]  M. Sanderson,et al.  Age and rate of diversification of the Hawaiian silversword alliance (Compositae). , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[67]  G. E. Hutchinson,et al.  The ecological theater and the evolutionary play , 1965 .

[68]  Campbell O. Webb,et al.  Trait Evolution, Community Assembly, and the Phylogenetic Structure of Ecological Communities , 2007, The American Naturalist.

[69]  J. Richardson,et al.  Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. , 2006, The New phytologist.

[70]  Campbell O. Webb,et al.  Niche evolution and adaptive radiation: testing the order of trait divergence. , 2006, Ecology.

[71]  M. Donoghue,et al.  Angiosperm family pairs: Preliminary phylogenetic analysis , 1994 .

[72]  M. Luckow,et al.  Origins and relationships of tropical North America in the context of the boreotropics hypothesis. , 1993 .

[73]  J. Cavender-Bares,et al.  Phylogenetic Overdispersion in Floridian Oak Communities , 2004, The American Naturalist.

[74]  Stephen P Hubbell,et al.  The phylogenetic structure of a neotropical forest tree community. , 2006, Ecology.

[75]  S. Renner,et al.  Historical biogeography of Melastomataceae: the roles of Tertiary migration and long-distance dispersal. , 2001, American journal of botany.

[76]  P. D. Körner Alpine Plant Life , 1999, Springer Berlin Heidelberg.

[77]  P. García‐Fayos,et al.  ‘Convergent’ traits of mediterranean woody plants belong to pre-mediterranean lineages , 2003 .

[78]  Nancy Knowlton,et al.  Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. , 2007, Ecology letters.