Fast water transport in graphene nanofluidic channels

[1]  H. Park,et al.  Ion transport in graphene nanofluidic channels. , 2016, Nanoscale.

[2]  Alessandro Siria,et al.  Massive radius-dependent flow slippage in carbon nanotubes , 2016, Nature.

[3]  A. T. Johnson,et al.  Quantifying the intrinsic surface charge density and charge-transfer resistance of the graphene-solution interface through bias-free low-level charge measurement , 2016, 1708.08962.

[4]  S. Haigh,et al.  Molecular transport through capillaries made with atomic-scale precision , 2016, Nature.

[5]  Omar Matar,et al.  Optimizing Water Transport through Graphene-Based Membranes: Insights from Nonequilibrium Molecular Dynamics. , 2016, ACS applied materials & interfaces.

[6]  Jiapeng Yu,et al.  Nanoscale View of Dewetting and Coating on Partially Wetted Solids. , 2016, The journal of physical chemistry letters.

[7]  M. Alibakhshi,et al.  Accurate measurement of liquid transport through nanoscale conduits , 2016, Scientific Reports.

[8]  M. Dresselhaus,et al.  A Rational Strategy for Graphene Transfer on Substrates with Rough Features , 2016, Advanced materials.

[9]  L. Bocquet,et al.  Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes. , 2015, Physical review letters.

[10]  Sheng Dai,et al.  Water desalination using nanoporous single-layer graphene. , 2015, Nature nanotechnology.

[11]  Jie Zhang,et al.  Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. , 2014, Journal of the American Chemical Society.

[12]  M. Pumera,et al.  Electrochemistry of graphene and related materials. , 2014, Chemical reviews.

[13]  Zhiping Xu,et al.  Wetting of graphene oxide: a molecular dynamics study. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[14]  Seeram Ramakrishna,et al.  Carbon nanotube membranes for water purification: A bright future in water desalination , 2014 .

[15]  Zhiping Xu,et al.  Understanding water permeation in graphene oxide membranes. , 2014, ACS applied materials & interfaces.

[16]  Hyung Gyu Park,et al.  Carbon nanofluidics of rapid water transport for energy applications. , 2014, Chemical Society reviews.

[17]  I. V. Grigorieva,et al.  Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes , 2014, Science.

[18]  Zhiping Xu,et al.  Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes , 2013, Nature Communications.

[19]  Jae-Young Choi,et al.  Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes , 2013, Science.

[20]  Miao Yu,et al.  Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation , 2013, Science.

[21]  M. Strano,et al.  Wetting translucency of graphene. , 2013, Nature materials.

[22]  Zhiping Xu,et al.  Breakdown of fast water transport in graphene oxides. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Young-Woo Son,et al.  Origin of anomalous water permeation through graphene oxide membrane. , 2013, Nano letters.

[24]  J. Barrat,et al.  On the Green-Kubo relationship for the liquid-solid friction coefficient. , 2013, The Journal of chemical physics.

[25]  W. Xiong,et al.  Control of surface wettability via strain engineering , 2013, 1304.4770.

[26]  E. Wang,et al.  Wettability of graphene. , 2013, Nano letters.

[27]  M. Prat,et al.  Roles of gas in capillary filling of nanoslits , 2012 .

[28]  Qing Hua Wang,et al.  Breakdown in the wetting transparency of graphene. , 2012, Physical review letters.

[29]  J. Grossman,et al.  Water desalination across nanoporous graphene. , 2012, Nano letters.

[30]  Yunfeng Shi,et al.  Wetting transparency of graphene. , 2012, Nature materials.

[31]  Yuyan Shao,et al.  Nanostructured carbon for energy storage and conversion , 2012 .

[32]  Sridhar Kumar Kannam,et al.  Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. , 2012, The Journal of chemical physics.

[33]  Michael S Strano,et al.  Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[34]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[35]  W. Xiong,et al.  Strain engineering water transport in graphene nanochannels. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Yapu Zhao,et al.  Measurement of the rate of water translocation through carbon nanotubes. , 2011, Nano letters.

[37]  D. Papavassiliou,et al.  Interfacial water on crystalline silica: a comparative molecular dynamics simulation study , 2011 .

[38]  Arun Majumdar,et al.  Anomalous ion transport in 2-nm hydrophilic nanochannels. , 2010, Nature nanotechnology.

[39]  S. Pennathur,et al.  Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Felix Sedlmeier,et al.  Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. , 2010, Nano letters.

[41]  J. Abascal,et al.  The shear viscosity of rigid water models. , 2010, The Journal of chemical physics.

[42]  Moran Wang,et al.  Electroviscous effects in nanofluidic channels. , 2010, The Journal of chemical physics.

[43]  Dominik Horinek,et al.  Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[44]  Jinghong Li,et al.  Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. , 2009, Journal of the American Chemical Society.

[45]  V. Phan,et al.  Analysis of capillary filling in nanochannels with electroviscous effects , 2009 .

[46]  John A. Thomas,et al.  Reassessing fast water transport through carbon nanotubes. , 2008, Nano letters.

[47]  J. Haneveld,et al.  Capillary filling of sub- 10 nm nanochannels , 2008 .

[48]  D. Stein,et al.  Slip-enhanced electrokinetic energy conversion in nanofluidic channels , 2008, Nanotechnology.

[49]  A. Kristensen,et al.  Electroviscous effects in capillary filling of nanochannels , 2008, 0802.1967.

[50]  Ben Corry,et al.  Designing carbon nanotube membranes for efficient water desalination. , 2008, The journal of physical chemistry. B.

[51]  A. Maali,et al.  Measurement of the slip length of water flow on graphite surface , 2008 .

[52]  X. Zhu,et al.  Hydrophilicity and the viscosity of interfacial water. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[53]  Tai-De Li,et al.  Structured and viscous water in subnanometer gaps , 2007 .

[54]  Weifeng Huang,et al.  Capillary Filling Flows inside Patterned-Surface Microchannels , 2006 .

[55]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[56]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005, Nature.

[57]  Miko Elwenspoek,et al.  Capillary filling speed of water in nanochannels , 2004 .

[58]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[59]  S. Khalid,et al.  A comparative molecular dynamics simulation study of the TonB-Dependent transporters: FpvA, FhuA, FecA, FepA and BtuB , 2007 .

[60]  Julia M. Goodfellow,et al.  Molecular dynamics study , 1997 .

[61]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .