QCD mesonic screening masses using Gribov quantization

The screening masses of mesons provide a gauge invariant and definite order parameter of chiral symmetry restoration. Different mesonic correlation lengths for flavor non-singlets, at least up to NLO, are well-defined gauge invariant physical quantities calculated earlier using the perturbative resummation techniques. The NLO perturbative results match the available non-perturbative lattice QCD results at the high-temperature regime. We have studied the spatial correlation lengths of various mesonic observables using the non-perturbative Gribov resummation, both for quenched QCD and (2 + 1) flavor QCD. The study follows the analogies with the NRQCD effective theory, a well-known theory for studying heavy quarkonia at zero temperature.

[1]  P. Hegde,et al.  Meson screening mass at finite chemical potential , 2022, Proceedings of The 39th International Symposium on Lattice Field Theory — PoS(LATTICE2022).

[2]  Jiaxing Zhao,et al.  Heavy-quark potential in the Gribov-Zwanziger approach around the deconfinement phase transition , 2022, Physical Review D.

[3]  M. G. Mustafa An introduction to Thermal Field Theory and Some of its Application , 2022, 2207.00534.

[4]  Antonio D. Pereira,et al.  Towards background field independence within the Gribov horizon , 2022, 2206.04103.

[5]  T. Harris,et al.  Non-perturbative thermal QCD at all temperatures: the case of mesonic screening masses , 2021, Journal of High Energy Physics.

[6]  E. Levin,et al.  High energy evolution for Gribov-Zwanziger confinement: Solution to the equation , 2020, Physical Review D.

[7]  E. Levin,et al.  Gribov-Zwanziger confinement, high energy evolution, and large impact parameter behavior of the scattering amplitude , 2020, 2009.12218.

[8]  A. Jaiswal,et al.  Covariant kinetic theory and transport coefficients for Gribov plasma , 2020, 2005.01303.

[9]  A. Bazavov,et al.  Meson screening masses in ( 2+1 )-flavor QCD , 2019, Physical Review D.

[10]  Najmul Haque Quark mass dependent collective excitations and quark number susceptibilities within the hard thermal loop approximation , 2018, Physical Review D.

[11]  S. P. Sorella,et al.  Accessing the topological susceptibility via the Gribov horizon , 2017, 1704.06529.

[12]  M. Laine,et al.  Basics of Thermal Field Theory , 2017, 1701.01554.

[13]  M. Capri,et al.  Local and BRST-invariant Yang-Mills theory within the Gribov horizon , 2016, 1605.02610.

[14]  K. Tywoniuk,et al.  Transport coefficients of the Gribov-Zwanziger plasma , 2015, 1509.01242.

[15]  M. Strickland,et al.  Dilepton rate and quark number susceptibility with the Gribov action , 2015, 1508.06249.

[16]  K. Tywoniuk,et al.  Bulk viscosity in a plasma of Gribov-Zwanziger gluons , 2015, 1504.03176.

[17]  K. Tywoniuk,et al.  Massless mode and positivity violation in hot QCD. , 2014, Physical review letters.

[18]  M. Laine,et al.  A relation between screening masses and real-time rates , 2014, 1404.2404.

[19]  Nan Su,et al.  Stabilizing perturbative Yang-Mills thermodynamics with Gribov quantization , 2013, 1304.8004.

[20]  M. Strickland,et al.  Quark number susceptibilities from two-loop hard thermal loop perturbation theory , 2013, 1302.3228.

[21]  Nan Su,et al.  Quark number susceptibilities from resummed perturbation theory , 2012, 1210.0912.

[22]  D. Zwanziger,et al.  The Gribov problem and QCD dynamics , 2012, 1202.1491.

[23]  C. Gale,et al.  Finite-Temperature Field Theory: Heavy ion collisions , 2006 .

[24]  J. Gracey Alternative refined Gribov-Zwanziger Lagrangian , 2010, 1009.3889.

[25]  M. Laine,et al.  On the smallest screening masses in hot QCD , 2009, 0906.4450.

[26]  H. Verschelde,et al.  Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results , 2008, 0806.4348.

[27]  M. Vepsalainen Mesonic screening masses at high temperature and finite density , 2007, hep-ph/0701250.

[28]  A. Hietanen Quark number susceptibility of high temperature QCD , 2006 .

[29]  A. Beraudo,et al.  Finite momentum meson correlation functions in a QCD plasma , 2006, hep-ph/0605060.

[30]  A. Ipp,et al.  Pressure of deconfined QCD for all temperatures and quark chemical potentials , 2006, hep-ph/0608250.

[31]  A. Gynther,et al.  Pressure of the standard model at high temperatures , 2005, hep-ph/0510375.

[32]  J. Gracey Two loop correction to the Gribov mass gap equation in Landau gauge QCD , 2005, hep-ph/0510151.

[33]  A. Beraudo,et al.  Meson correlation functions in a QCD plasma , 2004, hep-ph/0411346.

[34]  P. Petreczky,et al.  Static quark-antiquark free energy and the running coupling at finite temperature , 2004, hep-lat/0406036.

[35]  D. Kharzeev,et al.  The Gribov conception of quantum chromodynamics , 2004, hep-ph/0404216.

[36]  M. Strickland,et al.  Resummation in hot field theories , 2004, hep-ph/0404164.

[37]  M. Laine,et al.  Mesonic correlation lengths in high-temperature QCD , 2003, hep-ph/0311268.

[38]  A. Vuorinen Pressure of QCD at finite temperatures and chemical potentials , 2003, hep-ph/0305183.

[39]  E. Iancu,et al.  On the Apparent Convergence of Perturbative QCD at High Temperature , 2003, hep-ph/0303045.

[40]  M. Thoma,et al.  Quark-number susceptibility, thermodynamic sum rule, and the hard thermal loop approximation , 2003, hep-ph/0303009.

[41]  A. Vuorinen Quark number susceptibilities of hot QCD up to g 6 ln g , 2002, hep-ph/0212283.

[42]  M. Laine,et al.  The Pressure of hot QCD up to g6 ln(1/g) , 2002, hep-ph/0211321.

[43]  Sourendu Gupta,et al.  Valence quarks in the QCD plasma: Quark number susceptibilities and screening , 2002, hep-lat/0211015.

[44]  Sourendu Gupta,et al.  Continuum limit of quark number susceptibilities , 2002, hep-lat/0202006.

[45]  M. Thoma,et al.  Quark number susceptibility in hard thermal loop approximation , 2001, hep-ph/0111022.

[46]  E. Iancu,et al.  Quark number susceptibilities from HTL-resummed thermodynamics , 2001, hep-ph/0110369.

[47]  Sourendu Gupta,et al.  Susceptibilities and screening masses in two flavor QCD , 2001, hep-lat/0110032.

[48]  A. Cucchieri,et al.  Propagators and dimensional reduction of hot SU(2) gauge theory , 2001, hep-lat/0103009.

[49]  T. Hashimoto,et al.  Meson correlators in finite temperature lattice QCD , 2000, hep-lat/0008005.

[50]  M. Thoma,et al.  Finite Temperature Meson Correlation Functions in HTL Approximation , 2000, hep-ph/0007093.

[51]  O. Philipsen Static correlation lengths in QCD at high temperature and finite density , 2000, hep-lat/0011019.

[52]  Sourendu Gupta,et al.  Screening masses in SU(2) pure gauge theory , 1999, hep-lat/9906023.

[53]  Sourendu Gupta,et al.  Dimensional reduction and screening masses in pure gauge theories at finite temperature , 1998, hep-lat/9806034.

[54]  M. Shaposhnikov,et al.  3d SU(N) + adjoint Higgs theory and finite-temperature QCD , 1997, hep-ph/9704416.

[55]  A. Manohar The HQET / NRQCD Lagrangian to order alpha / m-3 , 1997, hep-ph/9701294.

[56]  M. Lissia,et al.  The Dimensionally Reduced Effective Theory for Quarks in High Temperature QCD , 1995, hep-ph/9511383.

[57]  Nieto,et al.  Free energy of QCD at high temperature. , 1995, Physical review. D, Particles and fields.

[58]  Sourendu Gupta,et al.  Spatial and temporal hadron correlators below and above the chiral phase transition , 1994, hep-lat/9405006.

[59]  Brown,et al.  Propagation of quarks in the spatial direction in hot QCD. , 1992, Physical Review D, Particles and fields.

[60]  I. Zahed,et al.  Hadronic correlators in hot QCD , 1992 .

[61]  Karsch,et al.  Hadronic correlation functions in the QCD plasma phase. , 1991, Physical review letters.

[62]  D. Zwanziger Local and renormalizable action from the gribov horizon , 1989 .

[63]  Kogut,et al.  Hadronic spectrum of the quark plasma. , 1987, Physical review letters.

[64]  G. Lepage,et al.  Effective lagrangians for bound state problems in QED, QCD, and other field theories , 1986 .

[65]  McLerran,et al.  Photon and dilepton emission from the quark-gluon plasma: Some general considerations. , 1985, Physical review. D, Particles and fields.

[66]  T. Appelquist,et al.  High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics , 1981 .

[67]  P. Ginsparg First and second order phase transitions in gauge theories at finite temperature , 1980 .

[68]  Andrei Linde Infrared problem in the thermodynamics of the Yang-Mills gas , 1980 .

[69]  M. Laine,et al.  Gauge-invariant scalar and field strength correlators in 3d , 2014 .

[70]  C. Jung,et al.  Meson screening masses from lattice QCD with two light and the strange quark , 2010 .

[71]  I. Stamatescu,et al.  Properties of hadron screening masses at finite baryonic density QCD - , 2004 .

[72]  M. Bellac Thermal Field Theory: Collective excitations in a plasma , 1996 .

[73]  M. Shaposhnikov,et al.  Generic rules for high temperature dimensional reduction and their application to the Standard Model , 1996 .

[74]  G. Rudolph,et al.  Quantization of nonabelian gauge theories , 1992 .

[75]  B. Ioffe,et al.  On Temperature Dependence of Correlators of Hadronic Currents , 1988 .

[76]  David J. Gross,et al.  QCD and instantons at finite temperature , 1981 .