Fitness landscape analysis for optimum multiuser detection problem

Optimum multiuser detection (OMD) for CDMA systems is an NP-complete combinatorial optimization problem. Fitness landscape has been proven to be very useful for understanding the behavior of combinatorial optimization algorithms and can help in predicting their performance. This paper analyzes the statistic properties of the fitness landscape of the OMD problem by performing autocorrelation analysis, fitness distance correlation test and epistasis measure. The analysis results explain why some random search algorithms are effective methods for OMD problem and give hints how to design more efficient randomized search heuristic algorithms for OMD.

[1]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[2]  Sergio Verdú,et al.  Computational complexity of optimum multiuser detection , 1989, Algorithmica.

[3]  L. Rasmussen,et al.  Multiuser detection in CDMA - a comparison of relaxations, exact, and heuristic search methods , 2004, IEEE Transactions on Wireless Communications.

[4]  Rick S. Blum,et al.  A gradient guided search algorithm for multiuser detection , 2000, IEEE Communications Letters.

[5]  Colin R. Reeves,et al.  An Experimental Design Perspective on Genetic Algorithms , 1994, FOGA.

[6]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[7]  Branimir R. Vojcic,et al.  A new approach to greedy multiuser detection , 2002, IEEE Trans. Commun..

[8]  Heng Siong Lim,et al.  An efficient local search heuristics for asynchronous multiuser detection , 2003, IEEE Communications Letters.

[9]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[10]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[11]  Bart Naudts,et al.  A comparison of predictive measures of problem difficulty in evolutionary algorithms , 2000, IEEE Trans. Evol. Comput..

[12]  Hean-Teik Chuah,et al.  Multiuser detection for DS-CDMA systems using evolutionary programming , 2003, IEEE Communications Letters.