Parcellating an Individual Subject's Cortical and Subcortical Brain Structures Using Snowball Sampling of Resting-State Correlations

We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability—reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units.

[1]  Scott T Grafton,et al.  Medial temporal lobe BOLD activity at rest predicts individual differences in memory ability in healthy young adults , 2008, Proceedings of the National Academy of Sciences.

[2]  Mark Jenkinson,et al.  A consistent relationship between local white matter architecture and functional specialisation in medial frontal cortex , 2006, NeuroImage.

[3]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[4]  Nora D. Volkow,et al.  Functional connectivity hubs in the human brain , 2011, NeuroImage.

[5]  Walter Schneider,et al.  Identifying the brain's most globally connected regions , 2010, NeuroImage.

[6]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[7]  M. Rushworth,et al.  Behavioral / Systems / Cognitive Connectivity-Based Parcellation of Human Cingulate Cortex and Its Relation to Functional Specialization , 2008 .

[8]  Paul B. Johnson,et al.  Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. , 1996, Cerebral cortex.

[9]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[10]  S. Petersen,et al.  Role of the anterior insula in task-level control and focal attention , 2010, Brain Structure and Function.

[11]  Damien A. Fair,et al.  Defining functional areas in individual human brains using resting functional connectivity MRI , 2008, NeuroImage.

[12]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[13]  S. Petersen,et al.  Concepts and principles in the analysis of brain networks , 2011, Annals of the New York Academy of Sciences.

[14]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[15]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[16]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Boussaoud,et al.  Projections of the claustrum to the primary motor, premotor, and prefrontal cortices in the macaque monkey , 2002, The Journal of comparative neurology.

[18]  M. Corbetta,et al.  Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex , 1997, Journal of Cognitive Neuroscience.

[19]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[20]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[21]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[22]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[23]  David C. Van Essen,et al.  The future of the human connectome , 2012, NeuroImage.

[24]  S. Berg Snowball Sampling—I , 2006 .

[25]  P. Strick,et al.  The Organization of Cerebellar and Basal Ganglia Outputs to Primary Motor Cortex as Revealed by Retrograde Transneuronal Transport of Herpes Simplex Virus Type 1 , 1999, The Journal of Neuroscience.

[26]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[27]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[28]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[29]  Nancy Kanwisher,et al.  Divide and conquer: A defense of functional localizers , 2006, NeuroImage.

[30]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[31]  Anders M. Dale,et al.  A hybrid approach to the Skull Stripping problem in MRI , 2001, NeuroImage.

[32]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[33]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[34]  Abraham Z. Snyder,et al.  CHAPTER 26 – Difference Image vs Ratio Image Error Function Forms in PET—PET Realignment , 1996 .

[35]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[36]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[37]  Abraham Z Snyder,et al.  Reliability of functional localization using fMRI , 2003, NeuroImage.

[38]  R. Myers Quantification of brain function using PET , 1996 .

[39]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[40]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[41]  Luke J. Chang,et al.  Connectivity-Based Parcellation of the Human Orbitofrontal Cortex , 2012, The Journal of Neuroscience.

[42]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex – From Brodmann's Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging , 2011, Front. Hum. Neurosci..

[43]  T. Sejnowski,et al.  Brain and cognition , 1989 .

[44]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[45]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[46]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[47]  D. Sharp,et al.  Fractionating the Default Mode Network: Distinct Contributions of the Ventral and Dorsal Posterior Cingulate Cortex to Cognitive Control , 2011, The Journal of Neuroscience.

[48]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[49]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[50]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[51]  Jack L. Lancaster,et al.  A modality‐independent approach to spatial normalization of tomographic images of the human brain , 1995 .

[52]  Bryan R. Conroy,et al.  Function-based Intersubject Alignment of Human Cortical Anatomy , 2009, Cerebral cortex.

[53]  Russell A. Poldrack,et al.  Detecting network modules in fMRI time series: A weighted network analysis approach , 2010, NeuroImage.

[54]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[55]  N. Kanwisher,et al.  New method for fMRI investigations of language: defining ROIs functionally in individual subjects. , 2010, Journal of neurophysiology.

[56]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[57]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[58]  Marc Joliot,et al.  Brain activity at rest: a multiscale hierarchical functional organization. , 2011, Journal of neurophysiology.

[59]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[60]  Timothy Edward John Behrens,et al.  Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. , 2005, Cerebral cortex.

[61]  Jonathan D. Power,et al.  Parcellation in left lateral parietal cortex is similar in adults and children. , 2012, Cerebral cortex.

[62]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[63]  Peter Stiers,et al.  Unravelling the Intrinsic Functional Organization of the Human Lateral Frontal Cortex: A Parcellation Scheme Based on Resting State fMRI , 2012, The Journal of Neuroscience.

[64]  Hangyi Jiang,et al.  Mapping of functional areas in the human cortex based on connectivity through association fibers. , 2009, Cerebral cortex.

[65]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[66]  G. Deco,et al.  Emerging concepts for the dynamical organization of resting-state activity in the brain , 2010, Nature Reviews Neuroscience.

[67]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[68]  B. Biswal,et al.  The resting brain: unconstrained yet reliable. , 2009, Cerebral cortex.

[69]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[70]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[71]  M. Schölvinck,et al.  Neural basis of global resting-state fMRI activity , 2010, Proceedings of the National Academy of Sciences.

[72]  B. Vogt,et al.  Human cingulate cortex: Surface features, flat maps, and cytoarchitecture , 1995, The Journal of comparative neurology.

[73]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[74]  J. Mugler,et al.  Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) , 1990, Magnetic resonance in medicine.

[75]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[76]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[77]  W. Eric L. Grimson,et al.  A Genetic Algorithm for the Topology Correction of Cortical Surfaces , 2005, IPMI.

[78]  M. Posner Foundations of cognitive science , 1989 .

[79]  Jonathan D. Power,et al.  A Parcellation Scheme for Human Left Lateral Parietal Cortex , 2010, Neuron.

[80]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[81]  Sabine Kastner,et al.  Neuroscience: Unconscious networking , 2007, Nature.

[82]  Russell A. Poldrack,et al.  In praise of tedious anatomy , 2007, NeuroImage.

[83]  S. Petersen,et al.  Characterizing the Hemodynamic Response: Effects of Presentation Rate, Sampling Procedure, and the Possibility of Ordering Brain Activity Based on Relative Timing , 2000, NeuroImage.

[84]  A. Schleicher,et al.  Receptor architecture of human cingulate cortex: Evaluation of the four‐region neurobiological model , 2009, Human brain mapping.

[85]  Keith A. Johnson,et al.  Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease , 2009, The Journal of Neuroscience.

[86]  K. Amunts,et al.  Towards multimodal atlases of the human brain , 2006, Nature Reviews Neuroscience.

[87]  A. Schleicher,et al.  Organization of the Human Inferior Parietal Lobule Based on Receptor Architectonics , 2012, Cerebral cortex.