Visual Topography of Human Intraparietal Sulcus

Human parietal cortex is implicated in a wide variety of sensory and cognitive functions, yet its precise organization remains unclear. Visual field maps provide a potential structural basis for descriptions of functional organization. Here, we detail the topography of a series of five maps of the contralateral visual hemifield within human posterior parietal cortex. These maps are located along the medial bank of the intraparietal sulcus (IPS) and are revealed by direct visual stimulation during functional magnetic resonance imaging, allowing these parietal regions to be routinely and reliably identified simultaneously with occipital visual areas. Two of these maps (IPS3 and IPS4) are novel, whereas two others (IPS1 and IPS2) have previously been revealed only by higher-order cognitive tasks. Area V7, a previously identified visual map, is observed to lie within posterior IPS and to share a foveal representation with IPS1. These parietal maps are reliably observed across scan sessions; however, their precise topography varies between individuals. The multimodal organization of posterior IPS mirrors this variability in visual topography, with complementary tactile activations found immediately adjacent to the visual maps both medially and laterally. These visual maps may provide a practical framework in which to characterize the functional organization of human IPS.

[1]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[2]  C D Frith,et al.  Modulating irrelevant motion perception by varying attentional load in an unrelated task. , 1997, Science.

[3]  D. Somers,et al.  Processing Efficiency of Divided Spatial Attention Mechanisms in Human Visual Cortex , 2005, The Journal of Neuroscience.

[4]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[5]  Guy A. Orban,et al.  Mapping the parietal cortex of human and non-human primates , 2006, Neuropsychologia.

[6]  C. Connor,et al.  Tactile roughness: neural codes that account for psychophysical magnitude estimates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Amir Amedi,et al.  Combined activation and deactivation of visual cortex during tactile sensory processing. , 2007, Journal of neurophysiology.

[8]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[9]  N. Fisher,et al.  A correlation coefficient for circular data , 1983 .

[10]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[11]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[12]  N. Kanwisher,et al.  Neuroimaging of cognitive functions in human parietal cortex , 2001, Current Opinion in Neurobiology.

[13]  S. Dehaene,et al.  Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe , 2002, Neuron.

[14]  Susan J. Lederman,et al.  Multisensory Activation of the Intraparietal Area When Classifying Grating Orientation: A Functional Magnetic Resonance Imaging Study , 2006, The Journal of Neuroscience.

[15]  N. Kanwisher,et al.  The Generality of Parietal Involvement in Visual Attention , 1999, Neuron.

[16]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[17]  S. Dehaene,et al.  Interactions between number and space in parietal cortex , 2005, Nature Reviews Neuroscience.

[18]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[19]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[20]  M. Chun,et al.  Dissociable neural mechanisms supporting visual short-term memory for objects , 2006, Nature.

[21]  N. Lavie Perceptual load as a necessary condition for selective attention. , 1995, Journal of experimental psychology. Human perception and performance.

[22]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[23]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[24]  M. Landy,et al.  Orientation-selective adaptation to first- and second-order patterns in human visual cortex. , 2006, Journal of neurophysiology.

[25]  A. Pouget,et al.  Reference frames for representing visual and tactile locations in parietal cortex , 2005, Nature Neuroscience.

[26]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[27]  Susan J. Lederman,et al.  Tactile estimation of the roughness of gratings yields a graded response in the human brain: an fMRI study , 2005, NeuroImage.

[28]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[29]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[30]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[31]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[32]  Benjamin J. Shannon,et al.  Parietal lobe contributions to episodic memory retrieval , 2005, Trends in Cognitive Sciences.

[33]  Jonathan R. Polimeni,et al.  The V1-V2-V3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex , 2002, Neural Networks.

[34]  Marlene C. Richter,et al.  Retinotopic Organization and Functional Subdivisions of the Human Lateral Geniculate Nucleus: A High-Resolution Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[35]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[36]  J. Jay Todd,et al.  Capacity limit of visual short-term memory in human posterior parietal cortex , 2004, Nature.

[37]  Gregor Thut,et al.  Feeling by Sight or Seeing by Touch? , 2004, Neuron.

[38]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[40]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[41]  Mukund Balasubramaniana,et al.  The V 1 – V 2 – V 3 complex : quasiconformal dipole maps in primate striate and extrastriate cortex , 2002 .

[42]  Alex R. Wade,et al.  Extended Concepts of Occipital Retinotopy , 2005 .

[43]  D. Heeger,et al.  Sustained Activity in Topographic Areas of Human Posterior Parietal Cortex during Memory-Guided Saccades , 2006, The Journal of Neuroscience.

[44]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[45]  M. Behrmann,et al.  Parietal cortex and attention , 2004, Current Opinion in Neurobiology.

[46]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[47]  R. Andersen,et al.  The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements , 2006, Neuropsychologia.

[48]  M. Sereno,et al.  From monkeys to humans: what do we now know about brain homologies? , 2005, Current Opinion in Neurobiology.

[49]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[50]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[51]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[52]  S. Yantis,et al.  Cortical mechanisms of space-based and object-based attentional control , 2003, Current Opinion in Neurobiology.

[53]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[54]  Chantal Delon-Martin,et al.  fMRI Retinotopic Mapping—Step by Step , 2002, NeuroImage.

[55]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[56]  M. D’Esposito,et al.  Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. , 1997, NeuroImage.

[57]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[58]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[59]  R W Cox,et al.  Software tools for analysis and visualization of fMRI data , 1997, NMR in biomedicine.

[60]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[61]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[62]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[63]  Nancy Kanwisher,et al.  Divide and conquer: A defense of functional localizers , 2006, NeuroImage.

[64]  L. Chalupa,et al.  Organization of Visual Areas in Macaque and Human Cerebral Cortex , 2002 .

[65]  Carol L Colby,et al.  Active Vision in Parietal and Extrastriate Cortex , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[66]  A. Shmuel,et al.  Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain , 2002, Neuron.

[67]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[68]  Yale E. Cohen,et al.  A common reference frame for movement plans in the posterior parietal cortex , 2002, Nature Reviews Neuroscience.

[69]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[70]  P. Cavanagh,et al.  Cortical fMRI activation produced by attentive tracking of moving targets. , 1998, Journal of neurophysiology.

[71]  M. Corbetta,et al.  Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing , 2003, The Journal of Neuroscience.

[72]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[73]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[74]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[75]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[76]  Y. Miyashita,et al.  Functional Magnetic Resonance Imaging of Macaque Monkeys Performing Visually Guided Saccade Tasks Comparison of Cortical Eye Fields with Humans , 2004, Neuron.

[77]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[78]  R. Dolan,et al.  Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. , 2005, Cerebral cortex.

[79]  Andrew B. Leber,et al.  Coordination of Voluntary and Stimulus-Driven Attentional Control in Human Cortex , 2005, Psychological science.

[80]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[81]  Darren R. Gitelman,et al.  A Heteromodal Large-Scale Network for Spatial Attention , 2005 .

[82]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[83]  D. Somers,et al.  Multiple Spotlights of Attentional Selection in Human Visual Cortex , 2004, Neuron.

[84]  Robert O. Duncan,et al.  Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds , 2003, Neuron.