A full-system finite element approach to elastohydrodynamic lubrication problems

Cette these presente un modele elements finis avec couplage fort des problemes de lubrification elastohydrodynamique (EHD). La lubrification EHD consiste en une separation complete des surfaces en contact par un film complet de lubrifiant dans lequel est generee une pression suffisamment elevee pour engendrer une deformation elastique significative des surfaces. Ainsi, un couplage fort entre les effets hydrodynamiques et les effets elastiques s’etablit. Le systeme non-lineaire forme par les equations de Reynolds, d’elasticite lineaire et d’equilibre des charges est resolu de maniere couplee par une approche de type Newton-Raphson. Cette approche permet d’avoir de tres bons taux de convergence par rapport a l’approche classique avec couplage faible. Le probleme de frontiere libre de cavitation a la sortie du contact est traite par le biais d’une methode de penalisation. Des formulations de stabilisation appropriees sont utilisees pour etendre la resolution a des cas de contacts fortement charges. Ensuite, le comportement non-Newtonien du lubrifiant et les effets thermiques sont pris en compte. Le modele developpe est utilise pour etudier l’utilisation des Fluides de Tres Faible Viscosite dans les contacts EHD. L’utilisation de tels fluides en tant que lubrifiants offre deux avantages principaux: tout d’abord, la dissipation d’energie dans le contact par frottement est reduite et ensuite, dans le cadre de machines qui operent avec un fluide de fonction (generalement de faible viscosite) et un lubrifiant, le premier pourrait etre utilise pour remplir les deux fonctions. Cela permettrait une conception et une maintenance plus faciles de la machine en plus d’une amelioration de ses performances.

[1]  Eugenio Oñate,et al.  Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .

[2]  S. R. Wu A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication , 1986 .

[3]  Toshiharu Kazama,et al.  On the effects of the temperature profile approximation in thermal Newtonian solutions of elastohydrodynamic lubrication line contacts , 2001 .

[4]  H. Cheng,et al.  A Refined Solution to the Thermal-Elastohydrodynamic Lubrication of Rolling and Sliding Cylinders , 1965 .

[5]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[6]  J. Georges,et al.  Drainage of thin liquid films between relatively smooth surfaces , 1993 .

[7]  J. Ferry Viscoelastic properties of polymers , 1961 .

[8]  Albert Kingsbury EXPERIMENTS WITH AN AIR-LUBRICATED JOURNAL. , 2009 .

[9]  Model of fluid–structure interaction and its application to elastohydrodynamic lubrication , 2002 .

[10]  J. Tichy Modeling of thin film lubrication , 1995 .

[11]  H. Moes,et al.  Film thickness in elastohydrodynamically lubricated elliptic contacts , 1994 .

[12]  J. F. Dunn,et al.  A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts. II. General case, with lubricant entrainment along either principal axis of the Hertzian contact ellipse or at some intermediate angle , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Hugh Spikes,et al.  Fractionation of liquid lubricants at solid surfaces , 1996 .

[14]  H. Eyring Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates , 1936 .

[15]  H P Evans,et al.  Evaluation of deflection in semi-infinite bodies by a differential method , 2000 .

[16]  Hugh Spikes,et al.  Boundary Film Formation by Lubricant Base Fluids , 1996 .

[17]  H. P. Evans,et al.  Coupled solution of the elastohydrodynamic line contact problem using a differential deflection method , 2000 .

[18]  S. Granick,et al.  Motions and Relaxations of Confined Liquids , 1991, Science.

[19]  Thomas Farris,et al.  Spectral Analysis of Two-Dimensional Contact Problems , 1996 .

[20]  Benyebka Bou-Saïd,et al.  New formulation for lubrication with non-newtonian fluids , 1989 .

[21]  K. P. Oh,et al.  A unified treatment of thick and thin film elastohydrodynamic problems by using higher order element methods , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  C. Venner Multilevel solution of the EHL line and point contact problems , 1991 .

[23]  H. Matsuoka,et al.  Experimental study of ultrathin liquid lubrication film thickness at the molecular scale , 1997 .

[24]  Henry Peredur Evans,et al.  A novel method for integrating first- and second-order differential equations in elastohydrodynamic lubrication for the solution of smooth isothermal, line contact problems , 1999 .

[25]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[26]  J. Z. Zhu,et al.  The finite element method , 1977 .

[27]  Arthur K. Doolittle,et al.  Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free‐Space , 1951 .

[28]  Gilroy Harrison,et al.  The dynamic properties of supercooled liquids , 1976 .

[29]  J. Tong,et al.  Transient thermoelastohydrodynamic lubrication analysis of an involute spur gear , 2004 .

[30]  A. Cameron,et al.  Optical Analysis of Ball Bearing Starvation , 1971 .

[31]  Film pressure distributions in point contacts predicted by thermal EHL analyses , 2006 .

[32]  Wen Shizhu,et al.  A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication , 1990 .

[33]  R. Gohar,et al.  Oil Film Thickness and Rolling Friction in Elastohydrodynamic Point Contact , 1971 .

[34]  Martin Berzins,et al.  High-order discontinuous Galerkin method for elastohydrodynamic lubrication line contact problems , 2005 .

[35]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[36]  Jérôme Molimard,et al.  In Situ Pressure and Film Thickness Measurements in Rolling/Sliding Lubricated Point Contacts , 2003 .

[37]  J. L. Tevaarwerk,et al.  The Influence of Fluid Rheology on the Performance of Traction Drives , 1979 .

[38]  B. J. Hamrock,et al.  Fast Approach for Calculating Film Thicknesses and Pressures in Elastohydrodynamically Lubricated Contacts at High Loads , 1986 .

[39]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[40]  S. Bair,et al.  A Rheological Model for Elastohydrodynamic Contacts Based on Primary Laboratory Data , 1979 .

[41]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results , 1976 .

[42]  A. Brandt,et al.  Multilevel matrix multiplication and fast solution of integral equations , 1990 .

[43]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[44]  Rong-Tsong Lee,et al.  Multilevel solution for thermal elastohydrodynamic lubrication of rolling/sliding circular contacts , 1995 .

[45]  I. E. Fox Numerical evaluation of the potential for fuel economy improvement due to boundary friction reduction within heavy-duty diesel engines , 2005 .

[46]  Motohiro Kaneta,et al.  Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model , 2005 .

[47]  S. Bair A Rough Shear-Thinning Correction for EHD Film Thickness , 2004 .

[48]  Philippe Vergne,et al.  A unified shear-thinning treatment of both film thickness and traction in EHD , 2005, 0704.1798.

[49]  A. Kubo,et al.  THE APPLICATION OF NEWTON-RAPHSON METHOD TO THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF LINE CONTACTS , 1994 .

[50]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[51]  Hideaki Okamura,et al.  Paper XI(iii) – A contribution to the numerical analysis of isothermal elastohydrodynamic lubrication , 1993 .

[52]  Martin Berzins,et al.  Adaptive high-order finite element solution of transient elastohydrodynamic lubrication problems , 2006 .

[53]  On the Theory of Thermal Elastohydrodynamic Lubrication at High Slide-Roll Ratios—Circular Glass-Steel Contact Solution at Opposite Sliding , 2001 .

[54]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part II—Ellipticity Parameter Results , 1976 .

[55]  O. Reynolds IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil , 1886, Philosophical Transactions of the Royal Society of London.

[56]  R W Snidle,et al.  Elastohydrodynamic Lubrication of Heavily Loaded Circular Contacts , 1989 .

[57]  H. P. Evans,et al.  Inverse Solution of Reynolds’ Equation of Lubrication Under Point-Contact Elastohydrodynamic Conditions , 1981 .

[58]  P. Carreau Rheological Equations from Molecular Network Theories , 1972 .

[59]  Y-Z Hu,et al.  A comparative study of the methods for calculation of surface elastic deformation , 2003 .

[60]  A. Cameron,et al.  Evaluation of Lubricants Using Optical Elastohydrodynamics , 1968 .

[61]  K. P. Oh,et al.  Numerical solution of the point contact problem using the finite element method , 1977 .

[62]  H. P. Evans,et al.  The Isothermal Elastohydrodynamic Lubrication of Spheres , 1981 .

[63]  Zhiming Zhang,et al.  Thermal Non-Newtonian EHL Analysis of Rib-Roller End Contact in Tapered Roller Bearings , 1995 .

[64]  A. A. Lubrecht,et al.  The numerical solution of the elastohydrodynamically lubricated line- and point contact problem, using multigrid techniques , 1987 .

[65]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[66]  Ward O. Winer,et al.  Lubricant Limiting Shear Stress Effect on EHD Film Thickness , 1980 .

[67]  J. L. Tevaarwerk,et al.  A simple non-linear constitutive equation for elastohydrodynamic oil films , 1975 .

[68]  Jean Frene,et al.  Combined thin-film and Navier–Stokes analysis in high Reynolds number lubrication , 2006 .

[69]  B. Hamrock,et al.  Finite Element System Approach to EHL of Elliptical Contacts: Part I—Isothermal Circular Non-Newtonian Formulation , 1998 .

[70]  Scott Bair,et al.  Reference liquids for quantitative elastohydrodynamics: selection and rheological characterization , 2006 .

[71]  R. Gohar,et al.  The Mapping of Elastohydrodynamic Contacts , 1967 .

[72]  R. Bosma,et al.  Multigrid, An Alternative Method for Calculating Film Thickness and Pressure Profiles in Elastohydrodynamically Lubricated Line Contacts , 1986 .

[73]  H. Moes,et al.  Optimum similarity analysis with applications to elastohydrodynamic lubrication , 1992 .

[74]  N. Saka,et al.  Thermal Non-Newtonian Elastohydrodynamic Lubrication of Rolling Line Contacts , 1991 .

[75]  Hugh Spikes,et al.  The Development of a Spacer Layer Imaging Method (SLIM) for Mapping Elastohydrodynamic Contacts , 1996 .

[76]  M.M.A. Safa,et al.  Transducers for pressure, temperature and oil film thickness measurement in bearings , 1982 .

[78]  H. Matsuoka An Ultrathin Liquid Film Lubrication Theory. Calculation Method of Solvation Pressure and its Application to the EHL Problem , 1995 .

[79]  H. P. Evans,et al.  Transient elastohydrodynamic point contact analysis using a new coupled differential deflection method Part 1: Theory and validation , 2003 .

[80]  Abimael F. D. Loula,et al.  Finite element analysis of convection dominated reaction-diffusion problems , 2004 .

[81]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part IV—Starvation Results , 1976 .

[82]  J. Tichy A surface layer model for thin film lubrication , 1995 .