A Simple Discretization of the Vector Dirichlet Energy

We present a simple and concise discretization of the covariant derivative vector Dirichlet energy for triangle meshes in 3D using Crouzeix‐Raviart finite elements. The discretization is based on linear discontinuous Galerkin elements, and is simple to implement, without compromising on quality: there are two degrees of freedom for each mesh edge, and the sparse Dirichlet energy matrix can be constructed in a single pass over all triangles using a short formula that only depends on the edge lengths, reminiscent of the scalar cotangent Laplacian. Our vector Dirichlet energy discretization can be used in a variety of applications, such as the calculation of Killing fields, parallel transport of vectors, and smooth vector field design. Experiments suggest convergence and suitability for applications similar to other discretizations of the vector Dirichlet energy.

[1]  Keenan Crane,et al.  Stripe patterns on surfaces , 2015, ACM Trans. Graph..

[2]  Maks Ovsjanikov,et al.  Consistent functional cross field design for mesh quadrangulation , 2017, ACM Trans. Graph..

[3]  Eitan Grinspun,et al.  A Smoothness Energy without Boundary Distortion for Curved Surfaces , 2019, ACM Trans. Graph..

[4]  Chung Fang,et al.  Essentials of Thermodynamics , 2018, Springer Textbooks in Earth Sciences, Geography and Environment.

[5]  Maks Ovsjanikov,et al.  Discrete Derivatives of Vector Fields on Surfaces -- An Operator Approach , 2015, ACM Trans. Graph..

[6]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[7]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[8]  Eitan Grinspun,et al.  Computing discrete shape operators on general meshes , 2006, Comput. Graph. Forum.

[9]  H. Seidel,et al.  Pattern-aware Deformation Using Sliding Dockers , 2011, SIGGRAPH 2011.

[10]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[11]  Konrad Polthier,et al.  Anisotropic Filtering of Non‐Linear Surface Features , 2004, Comput. Graph. Forum.

[12]  A. Singer,et al.  Vector diffusion maps and the connection Laplacian , 2011, Communications on pure and applied mathematics.

[13]  Olga Sorkine-Hornung,et al.  Integrable PolyVector fields , 2015, ACM Trans. Graph..

[14]  Keenan Crane,et al.  Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..

[15]  Mathieu Desbrun,et al.  Vector field processing on triangle meshes , 2015, SIGGRAPH Asia Courses.

[16]  G. Gatica A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .

[17]  Thomas Müller,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 the Gödel Engine -an Interactive Approach to Visualization in General Relativity , 2022 .

[18]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[19]  Leonidas J. Guibas,et al.  As‐Killing‐As‐Possible Vector Fields for Planar Deformation , 2011, Comput. Graph. Forum.

[20]  David J. Hill,et al.  Efficient Fluid Simulation on the Surface of a Sphere , 2016, ACM Trans. Graph..

[21]  Leonidas J. Guibas,et al.  On Discrete Killing Vector Fields and Patterns on Surfaces , 2010, Comput. Graph. Forum.

[22]  S. C. Brenner,et al.  Forty Years of the Crouzeix‐Raviart element , 2015 .

[23]  Elmar Eisemann,et al.  Modeling n-Symmetry Vector Fields using Higher-Order Energies , 2018, ACM Trans. Graph..

[24]  Alessio Quaglino,et al.  Membrane locking in discrete shell theories , 2012 .

[25]  M. Mcpherson,et al.  Introduction to fluid mechanics , 1997 .

[26]  Maks Ovsjanikov,et al.  Functional Characterization of Deformation Fields , 2017, ACM Trans. Graph..

[27]  Wenyuan Xu,et al.  Analysis and design of anisotropic diffusion for image processing , 1994, Proceedings of 1st International Conference on Image Processing.

[28]  Hau-tieng Wu,et al.  Embedding Riemannian Manifolds by the Heat Kernel of the Connection Laplacian , 2013, 1305.4232.

[29]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[30]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[31]  I. Holopainen Riemannian Geometry , 1927, Nature.

[32]  Nancy Argüelles,et al.  Author ' s , 2008 .

[33]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[34]  Eitan Grinspun,et al.  A Discrete Model for Inelastic Deformation of Thin Shells , 2004 .

[35]  Samuel Rippa,et al.  Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..

[36]  Eitan Grinspun,et al.  A quadratic bending model for inextensible surfaces , 2006, SGP '06.

[37]  M. Wardetzky Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .

[38]  Maks Ovsjanikov,et al.  An Operator Approach to Tangent Vector Field Processing , 2013, SGP '13.

[39]  Heng Liu,et al.  Singularity-constrained octahedral fields for hexahedral meshing , 2018, ACM Trans. Graph..

[40]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[41]  Daniel Cremers,et al.  KillingFusion: Non-rigid 3D Reconstruction without Correspondences , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[43]  Yiying Tong,et al.  Discrete 2‐Tensor Fields on Triangulations , 2014, Comput. Graph. Forum.

[44]  R. Macneal The solution of partial differential equations by means of electrical networks , 1949 .

[45]  Bowen Yang,et al.  Real-Time Fluid Simulation on the Surface of a Sphere , 2019, PACMCGIT.

[46]  Eitan Grinspun,et al.  Discrete quadratic curvature energies , 2006, Comput. Aided Geom. Des..

[47]  Xiaofei He,et al.  Parallel vector field embedding , 2013, J. Mach. Learn. Res..

[48]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[49]  Olga Sorkine-Hornung,et al.  Instant field-aligned meshes , 2015, ACM Trans. Graph..

[50]  Keenan Crane,et al.  The Vector Heat Method , 2018, ACM Trans. Graph..

[51]  Yiying Tong,et al.  Discrete Connection and Covariant Derivative for Vector Field Analysis and Design , 2016, ACM Trans. Graph..

[52]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[53]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[54]  Hujun Bao,et al.  Boundary aligned smooth 3D cross-frame field , 2011, ACM Trans. Graph..

[55]  C. Weischedel A discrete geometric view on shear-deformable shell models , 2012 .

[56]  Olga Sorkine-Hornung,et al.  Designing N‐PolyVector Fields with Complex Polynomials , 2014, Comput. Graph. Forum.

[57]  Jieping Ye,et al.  Geodesic Distance Function Learning via Heat Flow on Vector Fields , 2014, ICML.

[58]  Tao Ju,et al.  Extrinsically smooth direction fields , 2016, Comput. Graph..

[59]  Alec Jacobson,et al.  Algorithms and Interfaces for Real-Time Deformation of 2D and 3D Shapes , 2013 .

[60]  Robert Bridson,et al.  Animating developable surfaces using nonconforming elements , 2008, ACM Trans. Graph..