Liquid surface tracking with error compensation

Our work concerns the combination of an Eulerian liquid simulation with a high-resolution surface tracker (e.g. the level set method or a Lagrangian triangle mesh). The naive application of a high-resolution surface tracker to a low-resolution velocity field can produce many visually disturbing physical and topological artifacts that limit their use in practice. We address these problems by defining an error function which compares the current state of the surface tracker to the set of physically valid surface states. By reducing this error with a gradient descent technique, we introduce a novel physics-based surface fairing method. Similarly, by treating this error function as a potential energy, we derive a new surface correction force that mimics the vortex sheet equations. We demonstrate our results with both level set and mesh-based surface trackers.

[1]  Robert Bridson,et al.  Robust Topological Operations for Dynamic Explicit Surfaces , 2009, SIAM J. Sci. Comput..

[2]  James F. O'Brien,et al.  A semi-Lagrangian contouring method for fluid simulation , 2005, TOGS.

[3]  C. Pozrikidis,et al.  Theoretical and computational aspects of the self-induced motion of three-dimensional vortex sheets , 2000, Journal of Fluid Mechanics.

[4]  Chang-Hun Kim,et al.  Discontinuous fluids , 2005, ACM Trans. Graph..

[5]  Brent Warren Williams,et al.  Fluid surface reconstruction from particles , 2008 .

[6]  Mark J. Stock,et al.  Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method , 2008, J. Comput. Phys..

[7]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, ACM Trans. Graph..

[8]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[9]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[10]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[11]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[12]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[13]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[14]  Markus H. Gross,et al.  Synthetic turbulence using artificial boundary layers , 2009, ACM Trans. Graph..

[15]  Markus H. Gross,et al.  Lagrangian vortex sheets for animating fluids , 2012, ACM Trans. Graph..

[16]  R. Fedkiw,et al.  A novel algorithm for incompressible flow using only a coarse grid projection , 2010, ACM Trans. Graph..

[17]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[18]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[19]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[20]  Hyeong-Seok Ko,et al.  Detail-preserving fully-Eulerian interface tracking framework , 2010, ACM Trans. Graph..

[21]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[22]  M. Gross,et al.  Physics-inspired topology changes for thin fluid features , 2010, ACM Trans. Graph..

[23]  Markus H. Gross,et al.  Deforming meshes that split and merge , 2009, ACM Trans. Graph..

[24]  R. Bridson,et al.  Matching fluid simulation elements to surface geometry and topology , 2010, ACM Trans. Graph..

[25]  Jihun Yu,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA '10.

[26]  Ignacio Llamas,et al.  Simulation of bubbles in foam with the volume control method , 2007, ACM Trans. Graph..

[27]  Ken Museth,et al.  VDB: High-resolution sparse volumes with dynamic topology , 2013, TOGS.

[28]  Matthias Müller-Fischer,et al.  Liquid simulation with mesh-based surface tracking , 2011, SIGGRAPH '11.

[29]  Seung Woo Lee,et al.  Baroclinic Turbulence with Varying Density and Temperature , 2012, IEEE Transactions on Visualization and Computer Graphics.

[30]  Robert Bridson,et al.  Linear-time smoke animation with vortex sheet meshes , 2012, SCA '12.

[31]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[32]  Greg Turk,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA 2010.

[33]  Hyeong-Seok Ko,et al.  Stretching and wiggling liquids , 2009, ACM Trans. Graph..

[34]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[35]  Jihun Yu,et al.  Explicit Mesh Surfaces for Particle Based Fluids , 2012, Comput. Graph. Forum.