Kernel Functions Based on Fuzzy Neighborhoods and Agglomerative Clustering

A fuzzy neighborhood model for analyzing information systems having topological structures on occurrences of keywords is proposed and associated kernel functions are studied. Sufficient conditions when a neighborhood defines a kernel are derived. Accordingly, agglomerative clustering algorithms are applicable which employ kernel functions. An illustrative example is given.

[1]  Sadaaki Miyamoto,et al.  Rough Sets and Current Trends in Computing , 2012, Lecture Notes in Computer Science.

[2]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[3]  G. Pólya,et al.  Remarks on Characteristic Functions , 1949 .

[4]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[5]  Brian Everitt,et al.  Cluster analysis , 1974 .

[6]  Robert C. Kohberger,et al.  Cluster Analysis (3rd ed.) , 1994 .

[7]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[8]  S. Miyamoto Generalizations of multisets and rough approximations , 2004 .

[9]  Sadaaki Miyamoto,et al.  Fuzzy c-Means Clustering Using Transformations into High Dimensional Spaces , 2002, FSKD.

[10]  Tsau Young Lin,et al.  Rough Sets and Data Mining: Analysis of Imprecise Data , 1996 .

[11]  B. S. Everitt,et al.  Cluster analysis , 2014, Encyclopedia of Social Network Analysis and Mining.

[12]  Sadaaki Miyamoto,et al.  Fuzzy c-Means Clustering Using Kernel Functions in Support Vector Machines , 2003, J. Adv. Comput. Intell. Intell. Informatics.

[13]  宮本 定明 Fuzzy sets in information retrieval and cluster analysis , 1990 .

[14]  Yasunori Endo,et al.  On some hierarchical clustering algorithms using kernel functions , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[15]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[16]  Tsau Young Lin,et al.  A Review of Rough Set Models , 1997 .

[17]  Sadaaki Miyamoto,et al.  A Fuzzy Neighborhood Model for Clustering, Classification, and Approximations , 2006, RSCTC.

[18]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .