Combined Two-Photon Imaging, Electrophysiological, and Anatomical Investigation of the Human Neocortex in Vitro

Spontaneous synchronous population activity (SPA) can be detected by electrophysiological methods in cortical slices of epileptic patients, maintained in a physiological medium in vitro. In order to gain additional spatial information about the network mechanisms involved in the SPA generation, we combined electrophysiological studies with two-photon imaging. Neocortical slices prepared from postoperative tissue of epileptic and tumor patients were maintained in a dual perfusion chamber in a physiological incubation medium. SPA was recorded with a 24-channel extracellular linear microelectrode covering all neocortical layers. After identifying the electrophysiologically active regions of the slice, bolus loading of neuronal and glial markers was applied on the tissue. SPA-related [Formula: see text] transients were detected in a large population of neighboring neurons with two-photon microscopy, simultaneous with extracellular SPA and intracellular whole-cell patch-clamp recordings. The intracellularly recorded cells were filled for subsequent anatomy. The cells were reconstructed in three dimensions and examined with light- and transmission electron microscopy. Combining high spatial resolution two-photon [Formula: see text] imaging techniques and high temporal resolution extra- and intracellular electrophysiology with cellular anatomy may permit a deeper understanding of the structural and functional properties of the human neocortex.

[1]  G. Katona,et al.  Dendritic nicotinic receptors modulate backpropagating action potentials and long‐term plasticity of interneurons , 2008, The European journal of neuroscience.

[2]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[3]  Andrew J. Trevelyan,et al.  Cellular mechanisms of high frequency oscillations in epilepsy: On the diverse sources of pathological activities , 2011, Epilepsy Research.

[4]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[5]  I. Parker,et al.  Construction of a two-photon microscope for video-rate Ca(2+) imaging. , 2001, Cell calcium.

[6]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[7]  György Buzsáki,et al.  Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo , 2007, Brain Structure and Function.

[8]  D. Johnston,et al.  The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons. , 1996, Learning & memory.

[9]  Z. Nusser,et al.  Release Probability-Dependent Scaling of the Postsynaptic Responses at Single Hippocampal GABAergic Synapses , 2006, The Journal of Neuroscience.

[10]  T. Sejnowski,et al.  A Compact Multiphoton 3D Imaging System for Recording Fast Neuronal Activity , 2007, PloS one.

[11]  T. Babb,et al.  Seizure outcome following standard temporal lobectomy: correlation with hippocampal neuron loss and extrahippocampal pathology. , 1992, Journal of neurosurgery.

[12]  K. Zilles,et al.  Current-source-density profiles associated with sharp waves in human epileptic neocortical tissue , 1999, Neuroscience.

[13]  R. Silver,et al.  A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy. , 2010, Optics express.

[14]  H. Berger Über das Elektrenkephalogramm des Menschen , 1938, Archiv für Psychiatrie und Nervenkrankheiten.

[15]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[16]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[17]  P A Schwartzkroin,et al.  Intracellular study of human epileptic cortex: in vitro maintenance of epileptiform activity? , 1984, Science.

[18]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets , 1994, The Journal of comparative neurology.

[19]  Pierre Gloor,et al.  Hans Berger on Electroencephalography , 1969 .

[20]  D. Prince,et al.  Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features , 1990, The Journal of comparative neurology.

[21]  M. Steriade,et al.  Brainstem Control of Wakefulness and Sleep , 1990, Springer US.

[22]  W. Denk,et al.  Imaging in vivo: watching the brain in action , 2008, Nature Reviews Neuroscience.

[23]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[24]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[25]  Pál Maák,et al.  Random access three-dimensional two-photon microscopy. , 2007, Applied optics.

[26]  T. Freund,et al.  The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro. , 2009, Brain : a journal of neurology.

[27]  Christian Wozny,et al.  The Subiculum: A Potential Site of Ictogenesis in Human Temporal Lobe Epilepsy , 2005, Epilepsia.

[28]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[29]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[30]  J. Lichtman,et al.  Optical sectioning microscopy , 2005, Nature Methods.

[31]  P. Saggau,et al.  Random-access Multiphoton (ramp) Microscopy Fast Functional Imaging of Single Neurons Using , 2005 .

[32]  S. Káli,et al.  Dendritic Spikes Induce Ripples in Parvalbumin Interneurons during Hippocampal Sharp Waves , 2014, Neuron.

[33]  Refet Firat Yazicioglu,et al.  Two-dimensional multi-channel neural probes with electronic depth control , 2010, BioCAS 2010.

[34]  Masahiko Watanabe,et al.  Release probability of hippocampal glutamatergic terminals scales with the size of the active zone , 2012, Nature Neuroscience.

[35]  D. Munoz,et al.  Hippocampal sclerosis and human memory. , 1993, Archives of neurology.

[36]  Balazs Rozsa,et al.  Distance-Dependent Scaling of Calcium Transients Evoked by Backpropagating Spikes and Synaptic Activity in Dendrites of Hippocampal Interneurons , 2004, The Journal of Neuroscience.

[37]  John S. Barlow,et al.  Electroencephalography: Basic Principles, Clinical Applications and Related Fields , 1983 .

[38]  E. Cocker,et al.  Fiber-optic fluorescence imaging , 2005, Nature Methods.

[39]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[40]  István Ulbert,et al.  Supplementary material to : Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus , 2010 .

[41]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[42]  R Y Tsien,et al.  Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes , 1982, The Journal of cell biology.

[43]  E. Avila Tumor Associated Epilepsy , 2013 .

[44]  F. Helmchen,et al.  In vivo calcium imaging of neural network function. , 2007, Physiology.

[45]  Cortical Dysgenesis in Adults with Epilepsy , 1994 .

[46]  N. Davidson,et al.  Acousto-optic lens with very fast focus scanning. , 2001, Optics letters.

[47]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[48]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[49]  J. Kaas,et al.  Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. , 2006, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[50]  Wei Zheng,et al.  Chemical calcium indicators. , 2008, Methods.

[51]  C Sato,et al.  [Optical imaging of brain function]. , 2001, No to shinkei = Brain and nerve.

[52]  Winfried Denk,et al.  Calcium imaging of single stereocilia in hair cells: Localization of transduction channels at both ends of tip links , 1995, Neuron.

[53]  R. Silver,et al.  Gap Junctions Compensate for Sublinear Dendritic Integration in an Inhibitory Network , 2012, Science.

[54]  E J Speckmann,et al.  Spontaneous sharp waves in human neocortical slices excised from epileptic patients. , 1998, Brain : a journal of neurology.

[55]  Guglielmo Foffani,et al.  Reduced Spike-Timing Reliability Correlates with the Emergence of Fast Ripples in the Rat Epileptic Hippocampus , 2007, Neuron.

[56]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[57]  E J Speckmann,et al.  Optical monitoring of neuronal activity during spontaneous sharp waves in chronically epileptic human neocortical tissue. , 2000, Journal of neurophysiology.

[58]  P. Saggau,et al.  Fast three-dimensional laser scanning scheme using acousto-optic deflectors. , 2005, Journal of biomedical optics.

[59]  Lábos Elemér,et al.  AZ ELEKTROFIZIOLÓGIA FEJLŐDÉSÉNEK ÁLLOMÁSAI , 1996 .

[60]  Balázs Rózsa,et al.  Differential distribution of NCX1 contributes to spine–dendrite compartmentalization in CA1 pyramidal cells , 2007, Proceedings of the National Academy of Sciences.

[61]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[62]  P. Schwartzkroin Cellular electrophysiology of human epilepsy , 1994, Epilepsy Research.

[63]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[64]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[65]  M Steriade,et al.  Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses. , 1993, Journal of neurophysiology.

[66]  S. Antic,et al.  Patch-clamp recordings and calcium imaging followed by single-cell PCR reveal the developmental profile of 13 genes in iPSC-derived human neurons. , 2014, Stem cell research.

[67]  C. López-Otín,et al.  Autophagy: molecular mechanisms, physiological functions and relevance in human pathology , 2004, Cellular and Molecular Life Sciences CMLS.

[68]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[69]  István Ulbert,et al.  Multiple microelectrode-recording system for human intracortical applications , 2001, Journal of Neuroscience Methods.

[70]  Szabolcs Káli,et al.  Physiological sharp wave-ripples and interictal events in vitro: what's the difference? , 2014, Brain : a journal of neurology.

[71]  L. Sherwood Human Physiology : From Cells to Systems , 1989 .

[72]  F. Bezanilla The action potential: from voltage-gated conductances to molecular structures. , 2006, Biological research.

[73]  B. Sakmann,et al.  Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex , 2000, The Journal of physiology.

[74]  E. Halgren,et al.  Laminar analysis of slow wave activity in humans. , 2010, Brain : a journal of neurology.

[75]  Hirofumi Kitagawa,et al.  The burst firing in the layer III and V pyramidal neurons of the cat sensorimotor cortex in vitro , 1996, Brain Research.

[76]  E. Halgren,et al.  Properties of in vivo interictal spike generation in the human subiculum. , 2008, Brain : a journal of neurology.

[77]  Rita Zemankovics,et al.  Maintaining network activity in submerged hippocampal slices: importance of oxygen supply , 2009, The European journal of neuroscience.

[78]  Jerome Mertz,et al.  Two-photon microscopy in brain tissue: parameters influencing the imaging depth , 2001, Journal of Neuroscience Methods.

[79]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[80]  M. Berridge,et al.  Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature reviews. Molecular cell biology.

[81]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[82]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[83]  R. Green Neuropathology and behavior in epilepsy , 1991 .

[84]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[85]  D. Feldmeyer,et al.  Morphological and physiological characterization of pyramidal neuron subtypes in rat medial prefrontal cortex. , 2015, Cerebral cortex.

[86]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[87]  M H Ellisman,et al.  Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. , 1999, Biophysical journal.

[88]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[89]  Josemir W Sander,et al.  Standards for epidemiologic studies and surveillance of epilepsy , 2011, Epilepsia.

[90]  David Beeman,et al.  Hodgkin-Huxley Model , 2014, Encyclopedia of Computational Neuroscience.

[91]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[92]  V. Centonze,et al.  Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. , 1998, Biophysical journal.

[93]  M. Larkum,et al.  Frontiers in Neural Circuits Neural Circuits Methods Article , 2022 .

[94]  Manuel Marx,et al.  Morphology and Physiology of Excitatory Neurons in Layer 6b of the Somatosensory Rat Barrel Cortex , 2012, Cerebral cortex.

[95]  J. Kropotov Quantitative EEG, Event-Related Potentials and Neurotherapy , 2008 .

[96]  A. Wyler Surgery in Epilepsy , 1969, Journal of the Tennessee Medical Association.

[97]  J. Morrison,et al.  Quantitative analysis of the dendritic morphology of corticocortical projection neurons in the macaque monkey association cortex , 2002, Neuroscience.

[98]  K. Svoboda,et al.  Reverse engineering the mouse brain , 2009, Nature.

[99]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[100]  Naguib Mechawar Barr's The Human Nervous System—An Anatomical Viewpoint, 8th ed., J.A. Kiernan (Ed.) (2005), ISBN: 0-7817-5154-3 , 2007 .

[101]  R S Balaban,et al.  Optimizing multiphoton fluorescence microscopy light collection from living tissue by noncontact total emission detection (epiTED) , 2011, Journal of microscopy.

[102]  G. Mathern,et al.  Epilepsia , 1991, NEURO FUNDAMENTAL.

[103]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[104]  István Ulbert,et al.  In vivo laminar electrophysiology co-registered with histology in the hippocampus of patients with temporal lobe epilepsy , 2004, Experimental Neurology.

[105]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[106]  T H Swanson,et al.  The Pathophysiology of Human Mesial Temporal Lobe Epilepsy , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[107]  Lazaros C. Triarhou,et al.  Cellular Structure of the Human Cerebral Cortex , 2009 .

[108]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[109]  P. Somogyi,et al.  Massive Autaptic Self-Innervation of GABAergic Neurons in Cat Visual Cortex , 1997, The Journal of Neuroscience.

[110]  Andreas Hoenger,et al.  Correlative microscopy and electron tomography of GFP through photooxidation , 2005, Nature Methods.

[111]  R. Miles,et al.  Perturbed Chloride Homeostasis and GABAergic Signaling in Human Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[112]  K. Zilles,et al.  Structural divisions and functional fields in the human cerebral cortex 1 Published on the World Wide Web on 20 February 1998. 1 , 1998, Brain Research Reviews.

[113]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[114]  K. Berg,et al.  Assessing autophagy in the context of photodynamic therapy , 2010, Autophagy.

[115]  C. Elger,et al.  Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[116]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[117]  S W Hell,et al.  Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. , 1999, Biophysical journal.

[118]  Michiel A. Martens,et al.  Imaging neuron-glia interactions in the enteric nervous system , 2013, Front. Cell. Neurosci..

[119]  J. Vandenbroucke,et al.  Mortality in patients with epilepsy: 40 years of follow up in a Dutch cohort study , 1999, Journal of neurology, neurosurgery, and psychiatry.

[120]  W. Denk,et al.  Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. , 2003, Optics letters.

[121]  S. Spencer,et al.  Hippocampal resections and the use of human tissue in defining temporal lobe epilepsy syndromes , 1994, Hippocampus.

[122]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[123]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[124]  Katharina T. Hofer,et al.  The hippocampal CA3 region can generate two distinct types of sharp wave‐ripple complexes, in vitro , 2015, Hippocampus.

[125]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[126]  M. Steriade,et al.  Neuronal Plasticity in Thalamocortical Networks during Sleep and Waking Oscillations , 2003, Neuron.

[127]  G. Tamás,et al.  Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons , 2011, Proceedings of the National Academy of Sciences.

[128]  Enhanced Dendritic Action Potential Backpropagation in Parvalbumin-positive Basket Cells During Sharp Wave Activity , 2010, Neurochemical Research.

[129]  Saeid Sanei,et al.  Adaptive Processing of Brain Signals , 2013 .

[130]  E. Neher,et al.  The use of fura-2 for estimating ca buffers and ca fluxes , 1995, Neuropharmacology.

[131]  J H Margerison,et al.  Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. , 1966, Brain : a journal of neurology.

[132]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .

[133]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[134]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[135]  Eric A. Vitriol,et al.  Chromophore-assisted laser inactivation in cell biology. , 2008, Trends in cell biology.

[136]  Franklin Bretschneider,et al.  Introduction to Electrophysiological Methods and Instrumentation , 2006 .

[137]  R. Traub,et al.  A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex , 2009, Proceedings of the National Academy of Sciences.

[138]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[139]  T. Freund,et al.  Impaired and repaired inhibitory circuits in the epileptic human hippocampus , 2005, Trends in Neurosciences.

[140]  O. Garaschuk,et al.  Optical monitoring of brain function in vivo: from neurons to networks , 2006, Pflügers Archiv.

[141]  R. Frostig In Vivo Optical Imaging of Brain Function , 2002 .

[142]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[143]  J. Craig Henry,et al.  Creating Coordination in the Cerebellum: Progress in Brain Research, Volume 148 , 2006, Neurology.

[144]  B. Ngoi,et al.  Angular dispersion compensation for acousto-optic devices used for ultrashort-pulsed laser micromachining. , 2001, Optics express.

[145]  Z. Maglóczky,et al.  Sprouting in human temporal lobe epilepsy: Excitatory pathways and axons of interneurons , 2010, Epilepsy Research.

[146]  István Ulbert,et al.  A novel multisite silicon probe for high quality laminar neural recordings , 2011 .

[147]  Nathalie L Rochefort,et al.  Sparsification of neuronal activity in the visual cortex at eye-opening , 2009, Proceedings of the National Academy of Sciences.

[148]  R.N.Dej.,et al.  Epilepsy and the Functional Anatomy of the Human Brain , 1954, Neurology.

[149]  R Y Tsien,et al.  Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator , 1982, The Journal of cell biology.

[150]  Alfonso Araque,et al.  Astrocyte calcium signal and gliotransmission in human brain tissue. , 2013, Cerebral cortex.

[151]  D G Jay,et al.  Chromophore-assisted laser inactivation (CALI): probing protein function in situ with a high degree of spatial and temporal resolution. , 1996, Trends in cell biology.

[152]  Keith J. Kelleher,et al.  Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity , 2008, Nature Neuroscience.

[153]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[154]  D. Jay,et al.  Selective destruction of protein function by chromophore-assisted laser inactivation. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[155]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[156]  T. Bonhoeffer,et al.  Visual Cortex: Two-Photon Excitement , 2005, Current Biology.

[157]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[158]  Peter Saggau,et al.  Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. , 2003, Journal of biomedical optics.

[159]  Lazaros C. Triarhou,et al.  A Proposed Number System for the 107 Cortical Areas of Economo and Koskinas, and Brodmann Area Correlations , 2007, Stereotactic and Functional Neurosurgery.

[160]  A. Forman,et al.  Seizures and epilepsy in cancer: Etiologies, evaluation, and management , 2008, Current oncology reports.

[161]  Balázs Rózsa,et al.  Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes , 2012, Nature Methods.

[162]  L. Cathala,et al.  Thin Dendrites of Cerebellar Interneurons Confer Sublinear Synaptic Integration and a Gradient of Short-Term Plasticity , 2012, Neuron.

[163]  M. Avoli,et al.  Cellular and molecular mechanisms of epilepsy in the human brain , 2005, Progress in Neurobiology.

[164]  Matt Carter,et al.  Guide to Research Techniques in Neuroscience , 2009 .

[165]  Benjamin F. Grewe,et al.  Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens , 2011, Biomedical optics express.

[166]  Da-Ting Lin,et al.  Multi-photon laser scanning microscopy using an acoustic optical deflector. , 2002, Biophysical journal.

[167]  Y. de Koninck,et al.  Loss of Presynaptic and Postsynaptic Structures Is Accompanied by Compensatory Increase in Action Potential-Dependent Synaptic Input to Layer V Neocortical Pyramidal Neurons in Aged Rats , 2000, The Journal of Neuroscience.

[168]  F. L. D. Silva,et al.  EEG signal processing , 2000, Clinical Neurophysiology.

[169]  Szabolcs Káli,et al.  Dendritic Spikes Induce Ripples in Parvalbumin Interneurons during Hippocampal Sharp Waves , 2014, Neuron.