Intracellular Na+ regulation in cardiac myocytes.

Intracellular [Na+] ([Na+]i) is regulated in cardiac myocytes by a balance of Na+ influx and efflux mechanisms. In the normal cell there is a large steady state electrochemical gradient favoring Na+ influx. This potential energy is used by numerous transport mechanisms, including Na+ channels and transporters which couple Na+ influx to either co- or counter-transport of other ions and solutes. Six sarcolemmal Na+ influx pathways are discussed in relatively quantitative terms: Na+ channels, Na+/Ca2+ exchange, Na+/H+ exchange, Na+/Mg2+ exchange, Na+/HCO3- cotransport and Na+/K+/2Cl- cotransport. Under normal conditions Na+/Ca2+ exchange and Na+ channels are the dominant Na+ influx pathways, but other transporters may become increasingly important during altered conditions (e.g. acidosis or cell volume stress). Mitochondria also exhibit Na+/Ca2+ antiporter and Na+/H+ exchange activity that are important in mitochondrial function. These coupled fluxes of Na+ with Ca2+, H+ and HCO3- make the detailed understanding of [Na+]i regulation pivotal to the understanding of both cardiac excitation-contraction coupling and pH regulation. The Na+/K+-ATPase is the main route for Na+ extrusion from cells and [Na+]i is a primary regulator under physiological conditions. [Na+]i is higher in rat than rabbit ventricular myocytes and the reason appears to be higher Na+ influx in rat with a consequent rise in Na+/K+-ATPase activity (rather than lower Na+/K+-ATPase function in rat). This has direct functional consequences. There may also be subcellular [Na+]i gradients locally in ventricular myocytes and this may also have important functional implications. Thus, the balance of Na+ fluxes in heart cells may be complex, but myocyte Na+ regulation is functionally important and merits focused attention as in this issue.

[1]  M. Diaz,et al.  Measurement of sarcoplasmic reticulum Ca2+ content and sarcolemmal Ca2+ fluxes in isolated rat ventricular myocytes during spontaneous Ca2+ release , 1997, The Journal of physiology.

[2]  K. Hashimoto,et al.  Antiarrhythmic effects of HOE642, a novel Na(+)-H+ exchange inhibitor, on ventricular arrhythmias in animal hearts. , 1996, European journal of pharmacology.

[3]  C. Liang,et al.  Isoform-specific regulation of myocardial Na,K-ATPase alpha-subunit in congestive heart failure. Role of norepinephrine. , 1994, Circulation.

[4]  F. Verdonck,et al.  Consequences of CO2 acidosis for transmembrane Na+ transport and membrane current in rabbit cardiac Purkinje fibres. , 1990, The Journal of physiology.

[5]  Fry Ch Measurement and control of intracellular magnesium ion concentration in guinea pig and ferret ventricular myocardium. , 1986, Magnesium.

[6]  S. Harding,et al.  Sarcolemmal Na+/H+ exchanger activity and expression in human ventricular myocardium. , 2000, Journal of the American College of Cardiology.

[7]  B. Eigel,et al.  Contribution of the Na+channel and Na+/H+exchanger to the anoxic rise of [Na+] in ventricular myocytes. , 1999, American journal of physiology. Heart and circulatory physiology.

[8]  M. Crompton,et al.  The Sodium‐Induced Efflux of Calcium from Heart Mitochondria , 1976 .

[9]  D. Allen,et al.  Role of Na(+)/H(+) exchanger during ischemia and preconditioning in the isolated rat heart. , 1999, Circulation research.

[10]  C. Gillen,et al.  Functional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl cotransporter in HEK-293 cells. , 1999, American journal of physiology. Cell physiology.

[11]  R. Vaughan-Jones,et al.  Interaction between Na+ and H+ ions on Na-H exchange in sheep cardiac Purkinje fibers. , 1997, Journal of molecular and cellular cardiology.

[12]  Akinori Noma,et al.  Voltage dependence of Na/K pump current in isolated heart cells , 1985, Nature.

[13]  W. Boron Intracellular pH Regulation , 1987 .

[14]  D. Nicoll,et al.  A New Topological Model of the Cardiac Sarcolemmal Na+-Ca2+ Exchanger* , 1999, The Journal of Biological Chemistry.

[15]  G. Brierley,et al.  Cation transport systems in mitochondria: Na+ and K+ uniports and exchangers , 1994, Journal of bioenergetics and biomembranes.

[16]  M. Blaustein,et al.  Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Bers,et al.  Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. , 1996, Biophysical journal.

[18]  H N Sabbah,et al.  Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. , 1998, Circulation.

[19]  Donald M. Bers,et al.  Excitation-Contraction Coupling and Cardiac Contractile Force , 1991, Developments in Cardiovascular Medicine.

[20]  E Niggli,et al.  Paradoxical block of the Na+‐Ca2+ exchanger by extracellular protons in guinea‐pig ventricular myocytes , 2000, The Journal of physiology.

[21]  D. Bers,et al.  Rat vs. rabbit ventricle: Ca flux and intracellular Na assessed by ion-selective microelectrodes. , 1989, The American journal of physiology.

[22]  D. Bennett,et al.  Na/K pump α subunit expression in rabbit ventricle and regional variations of intracellular sodium regulation , 2000, Pflügers Archiv.

[23]  A. McDonough,et al.  Subcellular distribution of sodium pump isoform subunits in mammalian cardiac myocytes. , 1996, The American journal of physiology.

[24]  P. Brooksby,et al.  Properties of the Fluorescent Sodium Indicator “SBFI” in Rat and Rabbit Cardiac Myocytes , 1994, Journal of cardiovascular electrophysiology.

[25]  E. Carmeliet A fuzzy subsarcolemmal space for intracellular Na+ in cardiac cells? , 1992, Cardiovascular research.

[26]  A Garfinkel,et al.  Local regulation of the threshold for calcium sparks in rat ventricular myocytes: role of sodium‐calcium exchange , 1999, The Journal of physiology.

[27]  M. Lazdunski,et al.  Biochemical characterization of the Na+/K+/Cl- co-transport in chick cardiac cells. , 1986, Biochemical and biophysical research communications.

[28]  K. Philipson,et al.  Quantitation of Na/Ca exchanger function in single ventricular myocytes. , 1999, Journal of molecular and cellular cardiology.

[29]  J. Lingrel,et al.  Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic alpha isoform and beta subunit mRNAs. , 1988, The Journal of biological chemistry.

[30]  J. Mill,et al.  Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes. , 1992, The Journal of physiology.

[31]  D. Nicoll,et al.  Sodium-calcium exchange: a molecular perspective. , 2000, Annual review of physiology.

[32]  K. Sweadner,et al.  Postnatal changes in Na,K-ATPase isoform expression in rat cardiac ventricle. Conservation of biphasic ouabain affinity. , 1991, The Journal of biological chemistry.

[33]  R. Zahler,et al.  Sodium Kinetics of Na,K-ATPase α Isoforms in Intact Transfected HeLa Cells , 1997, The Journal of general physiology.

[34]  J. H. Collins,et al.  Molecular Cloning and Immunological Characterization of the / Polypeptide , a Small Protein Associated with the Na , K-ATPase , 1993 .

[35]  C. Fry,et al.  The effects of sodium, hydrogen and magnesium ions on mitochondrial calcium sequestration in adult rat ventricular myocytes , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  S. Nielsen,et al.  Sodium coupled bicarbonate transporters in the kidney, an update. , 2004, Acta physiologica Scandinavica.

[37]  G. Brierley,et al.  The Sodium-Calcium Antiport of Heart Mitochondria Is Not Electroneutral (*) , 1995, The Journal of Biological Chemistry.

[38]  D. Bers,et al.  Intracellular calcium and sodium activity in sheep heart Purkinje fibres , 1982, Pflügers Archiv.

[39]  S. Grinstein,et al.  Subcellular localization of the Na+/H+ exchanger NHE1 in rat myocardium. , 1999, The American journal of physiology.

[40]  C. Fry,et al.  Intracellular sodium and contractile function in hypertrophied human and guinea-pig myocardium , 2001, Pflügers Archiv.

[41]  B. Forbush,et al.  Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the Na,K-ATPase , 1993, The Journal of cell biology.

[42]  G. Nagel,et al.  Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation , 1992, The Journal of general physiology.

[43]  A. Trafford,et al.  Measurement of calcium entry and exit in quiescent rat ventricular myocytes , 2000, Pflügers Archiv.

[44]  D. Gadsby,et al.  [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes , 1989, The Journal of general physiology.

[45]  M. Lieberman,et al.  Magnesium homeostasis in cardiac cells , 1992, Molecular and Cellular Biochemistry.

[46]  P. Gage,et al.  A persistent sodium current in rat ventricular myocytes. , 1992, The Journal of physiology.

[47]  M. Futai,et al.  Sodium/Proton antiporter of rat liver mitochondria , 1980, FEBS letters.

[48]  T. Miyata,et al.  Primary structure of the α-subunit of Torpedo californica (Na+ + K+)ATPase deduced from cDNA sequence , 1985, Nature.

[49]  Lori L. Isom,et al.  Auxiliary subunits of voltage-gated ion channels , 1994, Neuron.

[50]  B. Silverman,et al.  Is there a transient rise in sub-sarcolemmal Na and activation of Na/K pump current following activation of I(Na) in ventricular myocardium? , 2003, Cardiovascular research.

[51]  H. Glitsch,et al.  Changes of the subsarcolemmal Na+ concentration in internally perfused cardiac cells. , 1991, Biochimica et biophysica acta.

[52]  M. Karmazyn,et al.  The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. , 1999, Circulation research.

[53]  S. Grinstein,et al.  Subcellular localization of the Na+/H+ exchanger NHE1 in rat myocardium. , 1999, American journal of physiology. Heart and circulatory physiology.

[54]  P. Lipp,et al.  Sodium current‐induced calcium signals in isolated guinea‐pig ventricular myocytes. , 1994, The Journal of physiology.

[55]  M. Lazdunski,et al.  The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. , 1985, Journal of molecular and cellular cardiology.

[56]  D. Newman,et al.  Cloning, Tissue Distribution, Genomic Organization, and Functional Characterization of NBC3, a New Member of the Sodium Bicarbonate Cotransporter Family* , 1999, The Journal of Biological Chemistry.

[57]  M. Konishi,et al.  Sodium gradient-dependent transport of magnesium in rat ventricular myocytes. , 2000, American journal of physiology. Cell physiology.

[58]  S. Grinstein,et al.  Na+/H+ Exchangers of Mammalian Cells* , 1997, The Journal of Biological Chemistry.

[59]  Donald M Bers,et al.  Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes , 2002, The Journal of physiology.

[60]  M R Boyett,et al.  The relationship between contraction and intracellular sodium in rat and guinea‐pig ventricular myocytes. , 1992, The Journal of physiology.

[61]  R. Vaughan-Jones,et al.  Na(+)‐HCO3‐ symport in the sheep cardiac Purkinje fibre. , 1992, The Journal of physiology.

[62]  H. Cingolani,et al.  An electrogenic sodium-bicarbonate cotransport in the regulation of myocardial intracellular pH. , 1995, Journal of molecular and cellular cardiology.

[63]  M. Donowitz,et al.  Human Na(+)/H(+) exchanger isoform 6 is found in recycling endosomes of cells, not in mitochondria. , 2002, American journal of physiology. Cell physiology.

[64]  J. Chamunorwa,et al.  Regional differences in the regulation of intracellular sodium and in action potential configuration in rabbit left ventricle , 1997, Pflügers Archiv.

[65]  F. Rannou,et al.  Alteration of Na,K-ATPase subunit mRNA and protein levels in hypertrophied rat heart. , 1994, The Journal of biological chemistry.

[66]  E. Bamberg,et al.  Na+,K(+)-ATPase pump currents in giant excised patches activated by an ATP concentration jump. , 1996, Biophysical journal.

[67]  M. Numata,et al.  Identification of a Mitochondrial Na+/H+Exchanger* , 1998, The Journal of Biological Chemistry.

[68]  D. Bers,et al.  Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. , 1997, The American journal of physiology.

[69]  R. Vaughan-Jones,et al.  Role of bicarbonate in pH recovery from intracellular acidosis in the guinea‐pig ventricular myocyte. , 1992, The Journal of physiology.

[70]  M. Blaustein,et al.  Sodium/calcium exchange: its physiological implications. , 1999, Physiological reviews.

[71]  Philipson Kd,et al.  Molecular and kinetic aspects of sodium-calcium exchange. , 1993 .

[72]  Donald M Bers,et al.  Intracellular Na+ Concentration Is Elevated in Heart Failure But Na/K Pump Function Is Unchanged , 2002, Circulation.

[73]  K. Spitzer,et al.  The sodium pump modulates the influence of I(Na) on [Ca2+]i transients in mouse ventricular myocytes. , 2001, Biophysical journal.

[74]  A. Therien,et al.  K+/Na+antagonism at cytoplasmic sites of Na+-K+-ATPase: a tissue-specific mechanism of sodium pump regulation. , 1999, American journal of physiology. Cell physiology.

[75]  W. Catterall,et al.  Cellular and molecular biology of voltage-gated sodium channels. , 1992, Physiological reviews.

[76]  G. Lukács,et al.  Characterization of the mitochondrial Na+H+ exchange. The effect of amiloride analogues , 1988 .

[77]  D. Gadsby,et al.  Voltage Dependence of the Na/K Pump , 1997, The Journal of Membrane Biology.

[78]  A. Yao,et al.  Effects of overexpression of the Na+-Ca2+ exchanger on [Ca2+]i transients in murine ventricular myocytes. , 1998, Circulation research.

[79]  P. Läuger,et al.  Electrogenic ion pumps , 1991 .

[80]  Lawrence M. Lifshitz,et al.  Coupling of the Na+/Ca2+exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle , 1993, Nature.

[81]  M. Romero,et al.  Electrogenic Na+/HCO3- cotransporters: cloning and physiology. , 1999, Annual review of physiology.

[82]  G. Blanco,et al.  Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. , 1998, American journal of physiology. Renal physiology.

[83]  O. Sejersted,et al.  Reduced myocardial Na+, K(+)-pump capacity in congestive heart failure following myocardial infarction in rats. , 1998, Journal of molecular and cellular cardiology.

[84]  M. Diaz,et al.  Enhanced Ca2+ current and decreased Ca2+ efflux restore sarcoplasmic reticulum Ca2+ content after depletion. , 1997, Circulation research.

[85]  A. Yao,et al.  Abnormal myocyte Ca2+homeostasis in rabbits with pacing-induced heart failure. , 1998, American journal of physiology. Heart and circulatory physiology.

[86]  P W Gage,et al.  Hypoxia increases persistent sodium current in rat ventricular myocytes. , 1996, The Journal of physiology.

[87]  Y. Wang,et al.  Isoform‐specific regulation of the sodium pump by α‐ and β‐adrenergic agonists in the guinea‐pig ventricle , 1999 .

[88]  D. Noble,et al.  The regulation of intracellular Mg2+ in guinea‐pig heart, studied with Mg(2+)‐selective microelectrodes and fluorochromes , 1993, Experimental physiology.

[89]  P. Geck,et al.  Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells. , 1980, Biochimica et biophysica acta.

[90]  H. Glitsch,et al.  The Na+/K+ pump of cardiac Purkinje cells is preferentially fuelled by glycolytic ATP production , 2004, Pflügers Archiv.

[91]  G. Brierley,et al.  Transmembrane gradients of free Na+ in isolated heart mitochondria estimated using a fluorescent probe. , 1992, The American journal of physiology.

[92]  P. Donoso,et al.  Properties of the Fluorescent Sodium Indicator SBFI in Rat and Rabbit Cardiac Myocytes , 1994 .

[93]  Donald M. Bers,et al.  Allosteric Regulation of Na/Ca Exchange Current by Cytosolic Ca in Intact Cardiac Myocytes , 2001, The Journal of general physiology.

[94]  R. Vaughan-Jones,et al.  Sarcolemmal mechanisms for pHi recovery from alkalosis in the guinea‐pig ventricular myocyte , 1998, The Journal of physiology.

[95]  S. Matsuoka,et al.  Initial localization of regulatory regions of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[96]  A. Yao,et al.  Abnormal myocyte Ca 2 1 homeostasis in rabbits with pacing-induced heart failure , 1998 .

[97]  Y. Ng,et al.  Expression of Na+-K+-ATPase α1- and α3-isoforms in adult and neonatal ferret hearts , 1992 .

[98]  M. Crompton,et al.  The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. , 1977, European journal of biochemistry.

[99]  O. Sejersted,et al.  Fuzzy space and control of Na+, K(+)-pump rate in heart and skeletal muscle. , 1996, Acta physiologica Scandinavica.

[100]  J. Lytton,et al.  Stoichiometry of the Cardiac Na+/Ca2+ exchanger NCX1.1 measured in transfected HEK cells. , 2002, Biophysical journal.

[101]  C. Terracciano Rapid inhibition of the Na+‐K+ pump affects Na+‐Ca2+ exchanger‐mediated relaxation in rabbit ventricular myocytes , 2001, The Journal of physiology.

[102]  A. Trafford,et al.  The effect of acidosis on systolic Ca2+ and sarcoplasmic reticulum calcium content in isolated rat ventricular myocytes , 2000, The Journal of physiology.

[103]  R. Zahler,et al.  Na, K-ATPase isoform gene expression in normal and hypertrophied dog heart , 1996, Basic Research in Cardiology.

[104]  J. Lingrel,et al.  Amino-acid sequence of the catalytic subunit of the (Na+ + K+)ATPase deduced from a complementary DNA , 1985, Nature.

[105]  O. Shamraj,et al.  A putative fourth Na+,K(+)-ATPase alpha-subunit gene is expressed in testis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[106]  T. Iwamoto,et al.  Cardiac Na+-Ca2+ Exchange Molecular and Pharmacological Aspects , 2001 .

[107]  M. Blaustein,et al.  Ouabain augments Ca(2+) transients in arterial smooth muscle without raising cytosolic Na(+). , 2000, American journal of physiology. Heart and circulatory physiology.

[108]  R. Vaughan-Jones,et al.  Characterization of intracellular pH regulation in the guinea‐pig ventricular myocyte , 1999, The Journal of physiology.

[109]  J. Kentish,et al.  Effects of changes of pH on the contractile function of cardiac muscle. , 1990, The American journal of physiology.

[110]  D. Newman,et al.  Cloning, characterization and chromosomal assignment of NBC4, a new member of the sodium bicarbonate cotransporter family. , 2000, Biochimica et biophysica acta.

[111]  E. Songu-Mize,et al.  Effect of Na+ on Na+,K+-ATPase alpha-subunit expression and Na+-pump activity in aortic smooth muscle cells. , 1998, European journal of pharmacology.

[112]  M. Sanguinetti,et al.  Influence of prior Na+ pump activity on pump and Na+/Ca2+exchange currents in mouse ventricular myocytes. , 1998, American journal of physiology. Heart and circulatory physiology.

[113]  H. Glitsch,et al.  Electrophysiology of the sodium-potassium-ATPase in cardiac cells. , 2001, Physiological reviews.

[114]  D M Bers,et al.  Influence of temperature on the calcium sensitivity of the myofilaments of skinned ventricular muscle from the rabbit , 1989, The Journal of general physiology.

[115]  H. Cingolani,et al.  Evidence for an electrogenic Na+‐HCO3− symport in rat cardiac myocytes , 1998 .

[116]  K. Philipson,et al.  Effects of pH on Na+‐Ca2+ Exchange in Canine Cardiac Sarcolemmal Vesicles , 1982, Circulation research.

[117]  J. Russell Sodium-potassium-chloride cotransport. , 2000, Physiological reviews.

[118]  R. Walsh,et al.  Identification of a specific role for the Na,K-ATPase alpha 2 isoform as a regulator of calcium in the heart. , 1999, Molecular cell.

[119]  M. Lieberman,et al.  (Na + K + 2Cl) cotransport in cultured embryonic chick heart cells. , 1987, The American journal of physiology.

[120]  C. Orchard,et al.  Effect of acidosis on Ca2+uptake and release by sarcoplasmic reticulum of intact rat ventricular myocytes. , 1998, American journal of physiology. Heart and circulatory physiology.

[121]  A. McDonough,et al.  All human Na+-K+-ATPase α-subunit isoforms have a similar affinity for cardiac glycosides , 2001 .

[122]  M. Romero,et al.  Cloning and characterization of a human electrogenic Na+-[Formula: see text]cotransporter isoform (hhNBC). , 1999, American journal of physiology. Cell physiology.

[123]  H. Glitsch,et al.  Change of Na+ pump current reversal potential in sheep cardiac Purkinje cells with varying free energy of ATP hydrolysis. , 1995, The Journal of physiology.

[124]  H. N. Sabbah,et al.  Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: role of sustained inward current , 1999, Cellular and Molecular Life Sciences CMLS.

[125]  R. Zahler,et al.  Expression of alpha isoforms of the Na,K-ATPase in human heart. , 1993, Biochimica et biophysica acta.

[126]  S. Matsuoka,et al.  Stoichiometry of Na+‐Ca2+ exchange in inside‐out patches excised from guinea‐pig ventricular myocytes , 2000, The Journal of physiology.

[127]  Donald M. Bers,et al.  Na+-Ca2+ Exchange Current and Submembrane [Ca2+] During the Cardiac Action Potential , 2002, Circulation research.

[128]  F. Conti,et al.  Structural parts involved in activation and inactivation of the sodium channel , 1989, Nature.

[129]  J. Pouysségur,et al.  Structure-function studies and molecular regulation of the growth factor activatable sodium-hydrogen exchanger (NHE-1). , 1995, Cardiovascular research.

[130]  H. Gonzalez-serratos,et al.  Plasmalemmal transport of magnesium in excitable cells. , 2000, Frontiers in bioscience : a journal and virtual library.

[131]  C. O. Lee,et al.  Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibers. , 1982, Biophysical journal.

[132]  I. Fleidervish,et al.  Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. , 1992, Circulation research.

[133]  S. Neubauer,et al.  Na(+)/H(+) exchange inhibition with HOE642 improves postischemic recovery due to attenuation of Ca(2+) overload and prolonged acidosis on reperfusion. , 2000, Circulation.

[134]  D. Hilgemann,et al.  Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger , 1991, Nature.

[135]  J Wang,et al.  Regional expression of sodium pump subunits isoforms and Na+-Ca++ exchanger in the human heart. , 1996, The Journal of clinical investigation.

[136]  G. Isenberg,et al.  Microheterogeneity of subsarcolemmal sodium gradients. Electron probe microanalysis in guinea‐pig ventricular myocytes. , 1993, The Journal of physiology.

[137]  C. Baumgarten,et al.  Modulation of rabbit ventricular cell volume and Na+/K+/2Cl- cotransport by cGMP and atrial natriuretic factor , 1992, The Journal of general physiology.

[138]  S. Ogawa,et al.  Isoform-specific alterations in cardiac and erythrocyte Na+,K+-ATPase activity induced by norepinephrine. , 1998, Journal of cardiac failure.

[139]  P. Dan,et al.  Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. , 2000, Biophysical journal.