Augmenting Genetic Algorithms with Neural Networks

Department of Computer Science, University of Toronto, Canada. Department of Chemistry, University of Toronto, Canada. Institute of Nanotechnology, Karlsruhe Institute of Technology, Germany. Vector Institute for Artificial Intelligence, Toronto, Canada. Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada †These authors contributed equally ∗Correspondence to: alan@aspuru.com

[1]  Alán Aspuru-Guzik,et al.  SELFIES: a robust representation of semantically constrained graphs with an example application in chemistry , 2019, ArXiv.

[2]  Jan H. Jensen,et al.  A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space , 2018, Chemical science.

[3]  Jure Leskovec,et al.  Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation , 2018, NeurIPS.

[4]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[5]  Koji Tsuda,et al.  ChemTS: an efficient python library for de novo molecular generation , 2017, Science and technology of advanced materials.

[6]  Alán Aspuru-Guzik,et al.  Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models , 2017, ArXiv.

[7]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[8]  Matt J. Kusner,et al.  Grammar Variational Autoencoder , 2017, ICML.

[9]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[10]  David N. Beratan,et al.  Strategy To Discover Diverse Optimal Molecules in the Small Molecule Universe , 2015, J. Chem. Inf. Model..

[11]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[12]  Gregory Landrum,et al.  RDKit: Open-source cheminformatics. Release 2014.03.1 , 2014 .

[13]  P. Wipf,et al.  Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds. , 2013, Journal of the American Chemical Society.

[14]  Ryan G. Coleman,et al.  ZINC: A Free Tool to Discover Chemistry for Biology , 2012, J. Chem. Inf. Model..

[15]  Noel M. O'Boyle,et al.  Computational Design and Selection of Optimal Organic Photovoltaic Materials , 2011 .

[16]  Peter Ertl,et al.  Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions , 2009, J. Cheminformatics.

[17]  W. Paszkowicz,et al.  Properties of a genetic algorithm equipped with a dynamic penalty function , 2009 .

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[19]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[20]  Steven Skiena,et al.  Syntax-Directed Variational Autoencoder for Molecule Generation , 2017 .