A New Initialization Method for Constructing Centroidal Voronoi Tessellations on Surface Meshes

Centroidal Voronoi tessellations can be constructed using iterative improvement methods such as Lloyd's method. Using iterative improvement methods implies that the convergence speed and the quality of the results depend on the initialization methods. In this paper, we propose an efficient initialization method for constructing centroidal Voronoi tessellations on surface meshes. The proposed method tries to make initial tessellations mimic the properties of the centroidal Voronoi tessellations. We compare our method with other initialization methods: random sampling, farthest point sampling and Ward's method. The results show that our method and Ward's method have the faster convergence speed than random sampling and farthest point sampling, and create better tessellations than random sampling.

[1]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[2]  Qiang Du,et al.  Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..

[3]  Martial Hebert,et al.  Control of Polygonal Mesh Resolution for 3-D Computer Vision , 1998, Graph. Model. Image Process..

[4]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[5]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[6]  Seungyong Lee,et al.  Transitive Mesh Space of a Progressive Mesh , 2003, IEEE Trans. Vis. Comput. Graph..

[7]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[8]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[9]  Edwin H. Blake,et al.  Generic memoryless polygonal simplification , 2001, AFRIGRAPH '01.

[10]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[11]  Jean-Marc Chassery,et al.  Approximated Centroidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening , 2004, Comput. Graph. Forum.

[12]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[13]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[14]  H. Borouchaki,et al.  Geometric surface mesh optimization , 1998 .

[15]  Desheng Wang,et al.  Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations , 2003 .

[16]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[17]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[18]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[19]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[20]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[21]  William Equitz,et al.  A new vector quantization clustering algorithm , 1989, IEEE Trans. Acoust. Speech Signal Process..

[22]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[23]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[24]  Leif Kobbelt,et al.  Fast Mesh Decimation by Multiple-Choice Techniques , 2002, VMV.

[25]  L. Cohen,et al.  Surface segmentation using geodesic centroidal tesselation , 2004 .

[26]  C.-C. Jay Kuo,et al.  A new initialization technique for generalized Lloyd iteration , 1994, IEEE Signal Processing Letters.