Stable isotopes and the noncarbonaceous derivation of ureilites, in common with nearly all differentiated planetary materials

[1]  Ureilites , 2013, Atlas of Meteorites.

[2]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[3]  A. Irving,et al.  Mn-Cr Isotope Systematics and Excess of 54-Cr in Metachondrite Northwest Africa 3133 , 2011 .

[4]  W. Hartmann,et al.  Breakup and Reassembly of the Ureilite Parent Body, Formation of 2008 TC3/Almahata Sitta, and Delivery of Ureilites to Earth , 2011 .

[5]  Edward R. D. Scott,et al.  Chondrules and the Protoplanetary Disk , 2011 .

[6]  L. Nittler,et al.  Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil -Implication for a late supernova injection into the Solar System , 2011, 1101.4949.

[7]  M. Laubenstein,et al.  Asteroid 2008 TC3—Almahata Sitta: A spectacular breccia containing many different ureilitic and chondritic lithologies , 2010 .

[8]  M. Zolensky,et al.  Thermal and fragmentation history of ureilitic asteroids: Insights from the Almahata Sitta fall , 2010 .

[9]  S. Sandford,et al.  Mineralogy and petrography of the Almahata Sitta ureilite , 2010 .

[10]  A. Rubin,et al.  Pyroxene-selective impact smelting in ureilites , 2010 .

[11]  P. Warren Asteroidal Depth-Pressure Relationships and the Style of the Ureilite Anatexis , 2010 .

[12]  A. Makishima,et al.  CHROMIUM ISOTOPE SYSTEMATICS OF ACHONDRITES: CHRONOLOGY AND ISOTOPIC HETEROGENEITY OF THE INNER SOLAR SYSTEM BODIES , 2010 .

[13]  A. Pack,et al.  IRON-60 HETEROGENEITY AND INCOMPLETE ISOTOPE MIXING IN THE EARLY SOLAR SYSTEM , 2010 .

[14]  J. Eiler,et al.  NEUTRON-RICH CHROMIUM ISOTOPE ANOMALIES IN SUPERNOVA NANOPARTICLES , 2010, 1007.4016.

[15]  A. W. Beck,et al.  Diogenites as polymict breccias composed of orthopyroxenite and harzburgite , 2010 .

[16]  D. Papanastassiou,et al.  Chromium Isotopes in Chondrites and the Heterogeneous Accretion of the Solar Nebula , 2010 .

[17]  R. Carlson,et al.  The chromium isotopic composition of Almahata Sitta , 2010 .

[18]  A. Kearsley,et al.  The relationship between CK and CV chondrites , 2010 .

[19]  A. Rubin,et al.  Petrology and Bulk Chemistry of R Chondrites: New Data , 2010 .

[20]  R. Carlson,et al.  Contributors to chromium isotope variation of meteorites , 2010 .

[21]  A. Gabriel Origin and evolution of ureilite vein metal - Fe, Ni, Co and Ni-isotope systematics of ureilite vein metal and ureilite silicates , 2010 .

[22]  G. Kallemeyn,et al.  Siderophile and other geochemical constraints on mixing relationships among HED-meteoritic breccias , 2009 .

[23]  E. Scott,et al.  Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites , 2009 .

[24]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[25]  C. Goodrich,et al.  Petrogenesis of augite-bearing ureilites Hughes 009 and FRO 90054/93008 inferred from melt inclusions in olivine, augite and orthopyroxene , 2009 .

[26]  M. Bizzarro,et al.  Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk , 2009, Science.

[27]  L. Wilson,et al.  Thermal evolution and physics of melt extraction on the ureilite parent body , 2008 .

[28]  C. Göpel,et al.  53Mn–53Cr systematics of the early Solar System revisited , 2008 .

[29]  D. Mittlefehldt,et al.  Evidence from polymict ureilite meteorites for a disrupted and re-accreted single ureilite parent asteroid gardened by several distinct impactors , 2008 .

[30]  T. Elliott,et al.  Nickel isotope heterogeneity in the early Solar System , 2008 .

[31]  A. Davis,et al.  Iron 60 Evidence for Early Injection and Efficient Mixing of Stellar Debris in the Protosolar Nebula , 2008, 0805.2607.

[32]  P. Warren A depleted, not ideally chondritic bulk Earth : The explosive-volcanic basalt loss hypothesis , 2008 .

[33]  U. Krähenbühl,et al.  Titanium isotopes and the radial heterogeneity of the solar system , 2008 .

[34]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[35]  L. Wilson,et al.  Fractional melting and smelting on the ureilite parent body , 2007 .

[36]  M. Bizzarro,et al.  Evidence for a Late Supernova Injection of 60Fe into the Protoplanetary Disk , 2007, Science.

[37]  J. Birck,et al.  Widespread 54Cr Heterogeneity in the Inner Solar System , 2007 .

[38]  I. Franchi,et al.  Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic compositions , 2006 .

[39]  M. Humayun,et al.  Osmium isotope systematics of ureilites , 2006 .

[40]  A. Shukolyukov,et al.  Manganese–chromium isotope systematics of carbonaceous chondrites , 2006 .

[41]  E. Jarosewich Chemical analyses of meteorites at the Smithsonian Institution: An update , 2006 .

[42]  T. Ueda,et al.  Chromium Isotopic Study of Ureilite , 2006 .

[43]  A. Treiman,et al.  Experimental petrology of the basaltic shergottite Yamato‐980459: Implications for the thermal structure of the Martian mantle , 2006 .

[44]  P. Garaud,et al.  The Effect of Internal Dissipation and Surface Irradiation on the Structure of Disks and the Location of the Snow Line around Sun-like Stars , 2006, astro-ph/0605110.

[45]  H. Huber,et al.  Ureilite petrogenesis: A limited role for smelting during anatexis and catastrophic disruption , 2006 .

[46]  H. Huber,et al.  Alkali‐feldspathic material entrained in Fe,S‐rich veins in a monomict ureilite , 2006 .

[47]  G. Lugmair,et al.  The Mn-Cr Isotope Systematics in the Ureilites Kenna and LEW 85440 , 2006 .

[48]  D. Sasselov,et al.  On the Location of the Snow Line in a Protoplanetary Disk , 2006, astro-ph/0602217.

[49]  P. Spurný,et al.  The orbit and atmospheric trajectory of the Orgueil meteorite from historical records , 2006 .

[50]  A. Jambon,et al.  Widespread magma oceans on asteroidal bodies in the early Solar System , 2005, Nature.

[51]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[52]  J. Lyons,et al.  CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula , 2005, Nature.

[53]  E. Scott,et al.  Ureilitic breccias: clues to the petrologic structure and impact disruption of the ureilite parent asteroid , 2004 .

[54]  K. Keil,et al.  Feldspathic clast populations in polymict ureilites: Stalking the missing basalts from the ureilite parent body , 2004 .

[55]  Y. Ikeda,et al.  Origin of ureilites inferred from a SIMS oxygen isotopic and trace element study of clasts in the Dar al Gani 319 polymict ureilite , 2004 .

[56]  Hisayoshi Yurimoto,et al.  Molecular Cloud Origin for the Oxygen Isotope Heterogeneity in the Solar System , 2004, Science.

[57]  H. Palme,et al.  Oxygen isotope evidence for rapid mixing of the HED meteorite parent body , 2004 .

[58]  T. Grove,et al.  Experimental Constraints on Ureilite Petrogenesis , 2004 .

[59]  G. Lugmair,et al.  Manganese-Chromium isotope systematics of basaltic achondrite Northwest Africa 011 , 2004 .

[60]  E. Scott,et al.  Classification of Meteorites , 2003 .

[61]  I. Wright,et al.  Elemental and Isotopic Abundances of Carbon and Nitrogen in Meteorites , 2003 .

[62]  T. Grove,et al.  Early petrologic processes on the ureilite parent body , 2003 .

[63]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[64]  R. Clayton,et al.  A New Source of Basaltic Meteorites Inferred from Northwest Africa 011 , 2002, Science.

[65]  M. Prinz,et al.  Magmatic inclusions and felsic clasts in the Dar al Gani 319 polymict ureilite , 2001 .

[66]  R. Clayton,et al.  A new metal‐rich chondrite grouplet , 2001 .

[67]  C. Pillinger,et al.  AN INTEGRATED MINERALOGICAL, PETROGRAPHIC, LIGHT STABLE ISOTOPE AND NOBLE GAS INVESTIGATION OF SAHARA 99201 UREILITE. C. L. Smith , 2001 .

[68]  C. Goodrich,et al.  Primary trapped melt inclusions in olivine in the olivine-augite-orthopyroxene ureilite Hughes 009 , 2001 .

[69]  J. Wasson Oxygen‐isotopic evolution of the solar nebula , 2000 .

[70]  P. Dove,et al.  Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws , 2000 .

[71]  M. Prinz,et al.  Lithic and mineral clasts in the Dar Al Gani (DAG) 319 polymict ureilite , 2000 .

[72]  C. Goodrich Are ureilites residues from partial melting of chondritic material? The answer from MAGPOX , 1999 .

[73]  A. Rubin Mineralogy of meteorite groups: An update , 1997 .

[74]  J. Delaney,et al.  A model composition of the basaltic achondrite planetoid , 1997 .

[75]  A. Rubin Mineralogy of meteorite groups , 1997 .

[76]  R. Clayton,et al.  The K (Kakangari) chondrite grouplet , 1996 .

[77]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[78]  G. J. Taylor,et al.  Origin of ureilite meteorites and implications for planetary accretion , 1993 .

[79]  H. McSween,et al.  Oxidation during metamorphism of the ordinary chondrites , 1993 .

[80]  G. Kallemeyn,et al.  Explosive volcanism and the graphite-oxygen fugacity buffer on the parent asteroid(s) of the ureilite meteorites , 1992 .

[81]  C. Goodrich Ureilites - A critical review , 1992 .

[82]  R. Clayton,et al.  Oxygen isotope studies of ordinary chondrites , 1991 .

[83]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[84]  H. Takeda,et al.  Mineralogy of augite‐bearing ureilites and the origin of their chemical trends , 1989 .

[85]  A. Rubin Formation of Ureilites by Impact‐Melting of Carbonaceous Chondritic Material , 1988 .

[86]  R. Clayton,et al.  Formation of ureilites by nebular processes , 1988 .

[87]  John H. Jones,et al.  Origin and evolution of the ureilite parent magmas: Multi-stage igneous activity on a large parent body , 1987 .

[88]  H. Takeda Mineralogy of Antarctic ureilites and a working hypothesis for their origin and evolution , 1987 .

[89]  H. Takeda,et al.  Cooling history of some Antarctic ureilites , 1985 .

[90]  H. Takeda,et al.  The polymict eucrites , 1984 .

[91]  K. Keil,et al.  The nature and origin of ureilites , 1980 .

[92]  D. Green,et al.  Anhydrous melting of peridotite at 0–15 Kb pressure and the genesis of tholeiitic basalts , 1980 .

[93]  H. McSween Carbonaceous chondrites of the Ornans type - A metamorphic sequence , 1977 .

[94]  W. Boynton,et al.  Chemical evidence for the genesis of the ureilites, the achondrite Chassigny and the nakhlites , 1976 .

[95]  R. W. Bild,et al.  Classification of and elemental fractionation among ureilites , 1976 .

[96]  J. Morgan,et al.  Chemical fractionations in meteorites - X. Ureilites , 1976 .

[97]  J. Wasson Relative abundance of CM chondrites in the inner and outer solar system , 1976 .

[98]  R. Clayton,et al.  A classification of meteorites based on oxygen isotopes , 1976 .

[99]  R. Clayton,et al.  A Component of Primitive Nuclear Composition in Carbonaceous Meteorites , 1973, Science.

[100]  J. P. Willis,et al.  THE CHEMICAL COMPOSITION OF KAINSAZ AND EFREMOVKA , 1973 .

[101]  L. Fuchs,et al.  Composition of metal in Type III carbonaceous chondrites and its relevance to the source-assignment of lunar metal , 1973 .

[102]  F. Wlotzka HAVERÖ UREILITE: EVIDENCE FOR RECRYSTALLIZATION AND PARTIAL REDUCTION , 1972 .

[103]  R. Brownlee Formation and Evolution of the Sun , 1963 .

[104]  A. .. Ringwood The Novo Urei meteorite , 1960 .

[105]  M. Perryman The Exoplanet Handbook: Formation and evolution , 2011 .

[106]  B. Choi,et al.  Oxygen Isotopic Compositions and Degree of Alteration of CR Chondrites , 2009 .

[107]  B. Jacobsen,et al.  53 Mn- 53 Cr SYSTEMATICS OF ALLENDE CHONDRULES AND ε 54 Cr—Δ 17 O CORRELATION IN BULK , 2009 .

[108]  R. Clayton Oxygen Isotopes in the Early Solar System — A Historical Perspective , 2008 .

[109]  P. Spurný,et al.  Meteorites from the Outer Solar System , 2008 .

[110]  A. Gabriel Fe, Co AND Ni IN UREILITE METAL AND SILICATES – CONSTRAINTS FOR THE ORIGIN OF UREILITE METAL , 2008 .

[111]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .

[112]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[113]  E. Scott,et al.  The Chondrite Types and their Origins , 2006 .

[114]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[115]  K. Keil,et al.  FORMATION AND EVOLUTION OF THE UREILITE PARENT BODY AND ITS OFFSPRING. , 2002 .

[116]  J. Delaney,et al.  Fe/Mg–Fe/Mn relations of meteorites and primary heterogeneity of primitive achondrite parent bodies , 2000 .

[117]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[118]  国立極地研究所,et al.  Catalog of the antarctic meteorites : collected from December 1969 to Deccember 1994, with special reference to those represented in the collections of the National Institute of Polar Research , 1995 .

[119]  Y. Ikeda,et al.  Origin of ureilites based on Allende dark inclusions. , 1993 .

[120]  Harold F. Levison,et al.  Evolution of comets into asteroids , 1989 .

[121]  B. Fegley,et al.  Oxidation state in chondrites , 1988 .

[122]  B. Mason,et al.  Catalog of Antarctic meteorites , 1980 .

[123]  Roger Till,et al.  Statistical Methods for the Earth Scientist , 1974 .

[124]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[125]  G. Mueller Genetical Interrelations Between Ureilites and Carbonaceous Chondrites , 1969 .

[126]  H. Wiik REGULAR DISCONTINUITIES IN THE COMPOSITION OF METEORITES. , 1969 .