Rheological response under nonisothermal stretching for immiscible blends of isotactic polypropylene and acrylate polymer

The addition of acrylate polymers with low molecular weight, such as poly(isobutyl methacrylate) (PIBM) and poly(methyl methacrylate) (PMMA), effectively enhances the force required to stretch a molten polypropylene (PP) at the nonisothermal condition without the enhancement of shear viscosity in the molten state. The mechanism of this phenomenon is found to be attributed to prompt solidification of PIBM and PMMA droplets, which deform greatly to the flow direction in the die land and near the die exit during the extrusion and stretching processes. After the die exit, the deformed droplets show the glassification prior to the crystallization of PP matrix because of the rapid cooling at stretching. Consequently, they behave like rigid fibers in a molten PP, which provide the excess stress by large shear deformation of the matrix between the dispersed glassy fibers during stretching.

[1]  S. Nobukawa,et al.  Effect of Crystallization on Drawdown Force at Capillary Extrusion for Polyethylene , 2016 .

[2]  Chul B. Park,et al.  Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils , 2015 .

[3]  J. Schawe Analysis of non-isothermal crystallization during cooling and reorganization during heating of isotactic polypropylene by fast scanning DSC , 2015 .

[4]  S. Nobukawa,et al.  Effect of Die Geometry on Drawdown Force of Polypropylene at Capillary Extrusion , 2015 .

[5]  S. Nobukawa,et al.  Effect of thermal modification on rheological properties of polyethylene blends , 2014 .

[6]  Amran Ali Mohd,et al.  Effect of Flexible Fibers on Rheological Properties of Poly (Lactic Acid) Composites under Elongational Flow (故 升田利史郎先生追悼号) , 2013 .

[7]  S. Funari,et al.  Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling , 2013 .

[8]  Qian Huang,et al.  Modifying the pom-pom model for extensional viscosity overshoots , 2015 .

[9]  Mohd Amran Md Ali,et al.  Modification of Rheological Properties Under Elongational Flow by Addition of Polymeric Fine Fibers , 2012 .

[10]  V. Doan,et al.  Effect of shear history on flow instability at capillary extrusion for long-chain branched polyethylene , 2012 .

[11]  S. Nobukawa,et al.  Rheological properties of polymer composites with flexible fine fibers , 2011 .

[12]  M. Yamaguchi,et al.  Structure and properties of injection-molded polypropylene with sorbitol-based clarifier , 2007 .

[13]  J. Langston Synthesis and Characterization of Long Chain Branched Isotactic Polypropylene via a Metallocene Catalyst and T-Reagent , 2007 .

[14]  Rahul K Gupta,et al.  THE EFFECT OF DIE GEOMETRIES AND EXTRUSION RATES ON MELT STRENGTH OF HIGH MELT STRENGTH POLYPROPYLENE , 2007 .

[15]  H. Münstedt,et al.  Rheological properties and foaming behavior of polypropylenes with different molecular structures , 2006 .

[16]  O. Hassager,et al.  Elongational viscosity of monodisperse and bidisperse polystyrene melts , 2006 .

[17]  M. Yamaguchi,et al.  Impact of processing history on rheological properties for branched polypropylene , 2006 .

[18]  C. Schick,et al.  Crystallization of polypropylene at various cooling rates , 2005 .

[19]  H. Münstedt,et al.  Rheological measuring techniques and their relevance for the molecular characterization of polymers , 2005 .

[20]  H. Münstedt,et al.  Correlation between rheological behaviour in uniaxial elongation and film blowing properties of various polyethylenes , 2005 .

[21]  M. Dees,et al.  Pressure oscillations and periodic extrudate distortions of long-chain branched polyolefins , 2005 .

[22]  P. Carreau,et al.  Rheological properties of long glass fiber filled polypropylene , 2005 .

[23]  H. Münstedt,et al.  Long-Chain Branched Polypropylenes by Electron Beam Irradiation and Their Rheological Properties , 2004 .

[24]  C. Macosko,et al.  Strain hardening in polypropylenes and its role in extrusion foaming , 2004 .

[25]  U. A. Handge,et al.  Interplay of rheology and morphology in melt elongation and subsequent recovery of polystyrene/poly(methyl methacrylate) blends , 2004 .

[26]  M. Sentmanat Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior , 2004 .

[27]  Yamaguchi Melt Elasticity of Polyolefins: Impact of Elastic Properties on Foam Processing , 2004 .

[28]  Shiping Zhu,et al.  Synthesis and Rheological Properties of Long-Chain-Branched Isotactic Polypropylenes Prepared by Copolymerization of Propylene and Nonconjugated Dienes , 2004 .

[29]  C. L. Tucker,et al.  Microstructural evolution in polymer blends , 2003 .

[30]  C. Gogos,et al.  Rheological properties of LDPE processed by conventional processing machines , 2003 .

[31]  K. Binder,et al.  Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study , 2002 .

[32]  M. Wagner,et al.  Determination of elongational viscosity of polymer melts by RME and Rheotens experiments , 2002 .

[33]  R. Armstrong,et al.  Two-dimensional numerical analysis of non-isothermal melt spinning with and without phase transition , 2002 .

[34]  A. Gotsis,et al.  Peroxydicarbonate modification of polypropylene and extensional flow properties , 2001 .

[35]  S. Bhattacharya,et al.  Extensional rheology of polypropylene melts from the Rheotens test , 2001 .

[36]  M. Yamaguchi,et al.  Rheological properties of low-density polyethylenes produced by tubular and vessel processes , 2001 .

[37]  M. Sugimoto,et al.  Melt Rheology of Polypropylene Containing Small Amounts of High-Molecular-Weight Chain. 2. Uniaxial and Biaxial Extensional Flow , 2001 .

[38]  H. Yamane,et al.  Dynamic interfacial properties of polymer blends under large step strains: shape recovery of a single droplet , 2001 .

[39]  A. Bernnat Polymer melt rheology and the rheotens test , 2001 .

[40]  Andrzej Wasiak,et al.  Effects of Cooling Rate on Crystallinity of i-Polypropylene and Polyethylene Terephthalate Crystallized in Nonisothermal Conditions , 1999 .

[41]  K. Koyama,et al.  Elongational viscosity for miscible and immiscible polymer blends. I. PMMA and AS with similar elongational viscosity , 1999 .

[42]  K. Koyama,et al.  Uniaxial elongational viscosity of various molten polymer composites , 1999 .

[43]  R. Larson,et al.  Molecular constitutive equations for a class of branched polymers: The pom-pom polymer , 1998 .

[44]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[45]  S. Bhattacharya,et al.  Melt strength of polypropylene: Its relevance to thermoforming , 1998 .

[46]  Chul B. Park,et al.  A study of cell nucleation in the extrusion of polypropylene foams , 1997 .

[47]  J. Meissner,et al.  Melt elongation and recovery of polymer blends, morphology, and influence of interfacial tension , 1997 .

[48]  K. Koyama,et al.  High‐melt‐strength polypropylene with electron beam irradiation in the presence of polyfunctional monomers , 1996 .

[49]  R. Li,et al.  Mechanical properties of injection moulded blends of polypropylene with thermotropic liquid crystalline polymer , 1996 .

[50]  Christopher W. Macosko,et al.  Rheology: Principles, Measurements, and Applications , 1994 .

[51]  Ica Manas-Zloczower,et al.  Mixing and Compounding of Polymers: Theory and Practice , 1994 .

[52]  R. Hingmann,et al.  Shear and elongational flow properties of polypropylene meltsa) , 1994 .

[53]  T. Masuda,et al.  Uniaxial and biaxial elongational flow of low density polyethylene/polystyrene blends , 1993 .

[54]  E. M. Phillips,et al.  NOVEL POLYPROPYLENES FOR FOAMING ON CONVENTIONAL EQUIPMENT , 1991 .

[55]  L. Utracki,et al.  On the uniaxial extensional flow of polystyrene/polyethylene blends , 1990 .

[56]  R. Weiss,et al.  Polymer Blends Containing Liquid Crystals: A Review , 1990 .

[57]  E. M. Phillips,et al.  High Performance Polypropylene Extrusion Coating Resins , 1990 .

[58]  H. Laun,et al.  Transient Elongational Viscosities and Drawability of Polymer Melts , 1989 .

[59]  L. Nicolais,et al.  Novel reinforced polymers based on blends of polystyrene and a thermotropic liquid crystalline polymer , 1987 .

[60]  J. Meissner,et al.  Melt elongation and structure of linear polyethylene (HDPE) , 1986 .

[61]  M. Kamal,et al.  Elongational behavior of short glass fiber reinforced polypropylene melts , 1984 .

[62]  James L. White,et al.  High density polyethylene/polystyrene blends: Phase distribution morphology, rheological measurements, extrusion, and melt spinning behavior , 1984 .

[63]  H. Laun Orientation effects and rheology of short glass fiber-reinforced thermoplastics , 1984 .

[64]  James L White,et al.  A Fundamental Study of the Rheological Properties of Glass‐Fiber‐Reinforced Polyethylene and Polystyrene Melts , 1978 .

[65]  A. Keller,et al.  A new route to high modulus polyethylene by lamellar structures nucleated onto fibrous substrates with general implications for crystallization behaviour , 1978 .

[66]  K. Osaki,et al.  Linear Viscoelastic Relation Concerning Shear Stresses at the Start and Cessation of Steady Shear Flow , 1976 .

[67]  J. Meissner Basic parameters, melt rheology, processing and end-use properties of three similar low density polyethylene samples , 1975 .

[68]  J. C. Tucker,et al.  Dependence of the glass transition temperature on heating and cooling rate , 1974 .

[69]  J. Mewis,et al.  The rheological properties of suspensions of fibres in Newtonian fluids subjected to extensional deformations , 1974, Journal of Fluid Mechanics.

[70]  J. Meiβner Dehnungsverhalten von Polyäthylen-Schmelzen , 1971 .

[71]  G. Batchelor,et al.  The stress generated in a non-dilute suspension of elongated particles by pure straining motion , 1971, Journal of Fluid Mechanics.