An innovative approach for highly selective direct conversion of CO₂ into propanol using C₂H₄ and H₂.

Multifunctional catalysts are developed for converting CO2 with C2H4 and H2 into propanol. Au nanoparticles (NP) supported on TiO2 are found to facilitate this reaction. The activity and selectivity strongly depend on NP size, which can be tuned by the method of Au deposition and by promoting with K. The promoter improves the selectivity to propanol. Under optimized reaction conditions (2 MPa, 473 K, and CO2/H2/C2H4=1:1:1), CO2 is continuously converted into propanol with a near-to-100% selectivity. Catalytic tests as well as mechanistic studies by in situ FTIR and temporal analysis of products with isotopic tracers allow the overall reaction scheme to be determined. Propanol is formed through a sequence of reactions starting with reverse water-gas shift to reduce CO2 to CO, which is further consumed in the hydroformylation of ethylene to propanal. The latter is finally hydrogenated to propanol, while propanol hydrogenation to propane is suppressed.

[1]  M. Haruta,et al.  Hydroformylation of olefins by Au/Co3O4 catalysts , 2009 .

[2]  F. Williams,et al.  K and Mn doped iron-based CO2 hydrogenation catalysts: Detection of KAlH4 as part of the catalyst's active phase , 2010 .

[3]  H. Arakawa,et al.  Ethylene hydroformylation and carbon monoxide hydrogenation over modified and unmodified silica supported rhodium catalysts , 2000 .

[4]  B. Rieger,et al.  Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? , 2011, Angewandte Chemie.

[5]  C. Descorme,et al.  TiO2-supported gold catalysts in the catalytic wet air oxidation of succinic acid: influence of the preparation, the storage and the pre-treatment conditions , 2011 .

[6]  Bongjin Simon Mun,et al.  Deactivation mechanism of a Au/CeZrO4 catalyst during a low-temperature water gas shift reaction , 2007 .

[7]  J. Pérez‐Ramírez,et al.  Evolution, achievements, and perspectives of the TAP technique , 2007 .

[8]  Siglinda Perathoner,et al.  Towards solar fuels from water and CO2. , 2010, ChemSusChem.

[9]  Yuhan Sun,et al.  Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. , 2013, Angewandte Chemie.

[10]  F. Williams,et al.  C2-C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts , 2011 .

[11]  G. Olah,et al.  Towards oil independence through renewable methanol chemistry. , 2013, Angewandte Chemie.

[12]  M. Niemelä,et al.  Activation of carbon dioxide on Fe-catalysts , 2005 .

[13]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[14]  H. Frei,et al.  Direct Observation of Kinetically Competent Surface Intermediates upon Ethylene Hydroformylation over Rh/Al2O3 under Reaction Conditions by Time-Resolved Fourier Transform Infrared Spectroscopy , 2011 .

[15]  A. Krause,et al.  Ethene hydroformylation on Co/SiO2 catalysts , 1998 .

[16]  K. Tominaga An environmentally friendly hydroformylation using carbon dioxide as a reactant catalyzed by immobilized Ru-complex in ionic liquids , 2006 .

[17]  Yongqing Zhang,et al.  CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts , 2002 .

[18]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[19]  G. A. Olah Der Weg in die Unabhängigkeit vom Öl mithilfe einer Chemie auf der Basis von erneuerbarem Methanol , 2013 .

[20]  Yong Yang,et al.  Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis , 2004 .

[21]  K. Philippot,et al.  About the Use of Rhodium Nanoparticles in Hydrogenation and Hydroformylation Reactions , 2013 .

[22]  M. Haruta,et al.  The Relationship between the Structure and Activity of Nanometer Size Gold When Supported on Mg(OH)2 , 1998 .

[23]  Yves Schuurman,et al.  TAP-2: An interrogative kinetics approach , 1997 .

[24]  Matthias Beller,et al.  State-of-the-art catalysts for hydrogenation of carbon dioxide. , 2010, Angewandte Chemie.

[25]  W. Leitner,et al.  Carbon dioxide as a C₁ building block for the formation of carboxylic acids by formal catalytic hydrocarboxylation. , 2013, Angewandte Chemie.

[26]  Mingyuan He,et al.  Grüne Kohlenstoffwissenschaft: eine wissenschaftliche Grundlage für das Verknüpfen von Verarbeitung, Nutzung und Recycling der Kohlenstoffressourcen , 2013 .

[27]  R. Burch Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. , 2006, Physical chemistry chemical physics : PCCP.

[28]  Shaoxing Zhang,et al.  Reverse water gas shift reaction over Co-precipitated Ni-CeO2 catalysts , 2008 .

[29]  K. Domen,et al.  Selective Hydrogenation of Acetylene over Au/Al2O3 Catalyst , 2000 .

[30]  Atsushi Ueda,et al.  Low-temperature water–gas shift reaction over gold deposited on TiO2 , 1997 .

[31]  D. Murzin,et al.  Mechanistic model for kinetics of propene hydroformylation with Rh catalyst , 2012 .

[32]  B. Rieger,et al.  Umwandlung von Kohlendioxid mit Übergangsmetall‐Homogenkatalysatoren: eine molekulare Lösung für ein globales Problem? , 2011 .

[33]  T. Tabakova,et al.  FTIR Study of the Low-Temperature Water–Gas Shift Reaction on Au/Fe2O3 and Au/TiO2 Catalysts , 1999 .

[34]  Ching-Shiun Chen,et al.  Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction , 2004 .

[35]  M. Beller,et al.  Moderne Katalysatoren zur Hydrierung von Kohlendioxid , 2010 .

[36]  Cecilia Mondelli,et al.  Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned , 2012 .

[37]  Matthias Beller,et al.  Progress in Hydroformylation and Carbonylation , 1995 .

[38]  G. Marin,et al.  Experimental investigation of ethylene hydroformylation to propanal on Rh and Co based catalysts , 2014 .

[39]  Fuat E. Celik,et al.  Gas-Phase Hydroformylation of Propene over Silica-Supported PPh3-Modified Rhodium Catalysts , 2011 .