An innovative approach for highly selective direct conversion of CO₂ into propanol using C₂H₄ and H₂.
暂无分享,去创建一个
David Linke | Evgenii V Kondratenko | E. Kondratenko | D. Linke | Ursula Bentrup | U. Bentrup | Stefan J Ahlers | Stefan J. Ahlers
[1] M. Haruta,et al. Hydroformylation of olefins by Au/Co3O4 catalysts , 2009 .
[2] F. Williams,et al. K and Mn doped iron-based CO2 hydrogenation catalysts: Detection of KAlH4 as part of the catalyst's active phase , 2010 .
[3] H. Arakawa,et al. Ethylene hydroformylation and carbon monoxide hydrogenation over modified and unmodified silica supported rhodium catalysts , 2000 .
[4] B. Rieger,et al. Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? , 2011, Angewandte Chemie.
[5] C. Descorme,et al. TiO2-supported gold catalysts in the catalytic wet air oxidation of succinic acid: influence of the preparation, the storage and the pre-treatment conditions , 2011 .
[6] Bongjin Simon Mun,et al. Deactivation mechanism of a Au/CeZrO4 catalyst during a low-temperature water gas shift reaction , 2007 .
[7] J. Pérez‐Ramírez,et al. Evolution, achievements, and perspectives of the TAP technique , 2007 .
[8] Siglinda Perathoner,et al. Towards solar fuels from water and CO2. , 2010, ChemSusChem.
[9] Yuhan Sun,et al. Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. , 2013, Angewandte Chemie.
[10] F. Williams,et al. C2-C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts , 2011 .
[11] G. Olah,et al. Towards oil independence through renewable methanol chemistry. , 2013, Angewandte Chemie.
[12] M. Niemelä,et al. Activation of carbon dioxide on Fe-catalysts , 2005 .
[13] Jonas Baltrusaitis,et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .
[14] H. Frei,et al. Direct Observation of Kinetically Competent Surface Intermediates upon Ethylene Hydroformylation over Rh/Al2O3 under Reaction Conditions by Time-Resolved Fourier Transform Infrared Spectroscopy , 2011 .
[15] A. Krause,et al. Ethene hydroformylation on Co/SiO2 catalysts , 1998 .
[16] K. Tominaga. An environmentally friendly hydroformylation using carbon dioxide as a reactant catalyzed by immobilized Ru-complex in ionic liquids , 2006 .
[17] Yongqing Zhang,et al. CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts , 2002 .
[18] Wei Wang,et al. Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.
[19] G. A. Olah. Der Weg in die Unabhängigkeit vom Öl mithilfe einer Chemie auf der Basis von erneuerbarem Methanol , 2013 .
[20] Yong Yang,et al. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis , 2004 .
[21] K. Philippot,et al. About the Use of Rhodium Nanoparticles in Hydrogenation and Hydroformylation Reactions , 2013 .
[22] M. Haruta,et al. The Relationship between the Structure and Activity of Nanometer Size Gold When Supported on Mg(OH)2 , 1998 .
[23] Yves Schuurman,et al. TAP-2: An interrogative kinetics approach , 1997 .
[24] Matthias Beller,et al. State-of-the-art catalysts for hydrogenation of carbon dioxide. , 2010, Angewandte Chemie.
[25] W. Leitner,et al. Carbon dioxide as a C₁ building block for the formation of carboxylic acids by formal catalytic hydrocarboxylation. , 2013, Angewandte Chemie.
[26] Mingyuan He,et al. Grüne Kohlenstoffwissenschaft: eine wissenschaftliche Grundlage für das Verknüpfen von Verarbeitung, Nutzung und Recycling der Kohlenstoffressourcen , 2013 .
[27] R. Burch. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. , 2006, Physical chemistry chemical physics : PCCP.
[28] Shaoxing Zhang,et al. Reverse water gas shift reaction over Co-precipitated Ni-CeO2 catalysts , 2008 .
[29] K. Domen,et al. Selective Hydrogenation of Acetylene over Au/Al2O3 Catalyst , 2000 .
[30] Atsushi Ueda,et al. Low-temperature water–gas shift reaction over gold deposited on TiO2 , 1997 .
[31] D. Murzin,et al. Mechanistic model for kinetics of propene hydroformylation with Rh catalyst , 2012 .
[32] B. Rieger,et al. Umwandlung von Kohlendioxid mit Übergangsmetall‐Homogenkatalysatoren: eine molekulare Lösung für ein globales Problem? , 2011 .
[33] T. Tabakova,et al. FTIR Study of the Low-Temperature Water–Gas Shift Reaction on Au/Fe2O3 and Au/TiO2 Catalysts , 1999 .
[34] Ching-Shiun Chen,et al. Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction , 2004 .
[35] M. Beller,et al. Moderne Katalysatoren zur Hydrierung von Kohlendioxid , 2010 .
[36] Cecilia Mondelli,et al. Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned , 2012 .
[37] Matthias Beller,et al. Progress in Hydroformylation and Carbonylation , 1995 .
[38] G. Marin,et al. Experimental investigation of ethylene hydroformylation to propanal on Rh and Co based catalysts , 2014 .
[39] Fuat E. Celik,et al. Gas-Phase Hydroformylation of Propene over Silica-Supported PPh3-Modified Rhodium Catalysts , 2011 .