Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters – Outcome of a Scientific Community-Wide Study

“It takes a village to finish (marine) science these days” Paraphrased from Curtis Huttenhower (the Human Microbiome project) The rapidity and complexity of climate change and its potential effects on ocean biota are challenging how ocean scientists conduct research. One way in which we can begin to better tackle these challenges is to conduct community-wide scientific studies. This study provides physiological datasets fundamental to understanding functional responses of phytoplankton growth rates to temperature. While physiological experiments are not new, our experiments were conducted in many laboratories using agreed upon protocols and 25 strains of eukaryotic and prokaryotic phytoplankton isolated across a wide range of marine environments from polar to tropical, and from nearshore waters to the open ocean. This community-wide approach provides both comprehensive and internally consistent datasets produced over considerably shorter time scales than conventional individual and often uncoordinated lab efforts. Such datasets can be used to parameterise global ocean model projections of environmental change and to provide initial insights into the magnitude of regional biogeographic change in ocean biota in the coming decades. Here, we compare our datasets with a compilation of literature data on phytoplankton growth responses to temperature. A comparison with prior published data suggests that the optimal temperatures of individual species and, to a lesser degree, thermal niches were similar across studies. However, a comparison of the maximum growth rate across studies revealed significant departures between this and previously collected datasets, which may be due to differences in the cultured isolates, temporal changes in the clonal isolates in cultures, and/or differences in culture conditions. Such methodological differences mean that using particular trait measurements from the prior literature might introduce unknown errors and bias into modelling projections. Using our community-wide approach we can reduce such protocol-driven variability in culture studies, and can begin to address more complex issues such as the effect of multiple environmental drivers on ocean biota.

[1]  K. Furuya,et al.  Latitudinal distribution of diazotrophs and their nitrogen fixation in the tropical and subtropical western North Pacific , 2009 .

[2]  P. Harrison,et al.  Photosynthetic architecture differs in coastal and oceanic diatoms , 2004, Nature.

[3]  P. Boyd,et al.  Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean , 2009 .

[4]  P. Boyd,et al.  Iron‐light interactions differ in Southern Ocean phytoplankton , 2012 .

[5]  Z. Popovic,et al.  Crystal structure of a monomeric retroviral protease solved by protein folding game players , 2011, Nature Structural &Molecular Biology.

[6]  P. Boyd,et al.  EXPERIMENTAL EVOLUTION MEETS MARINE PHYTOPLANKTON , 2013, Evolution; international journal of organic evolution.

[7]  Craig M. Lee,et al.  Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms , 2012, Science.

[8]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[9]  J. C. Goldman Potential role of large oceanic diatoms in new primary production , 1993 .

[10]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[11]  Richard Sanders,et al.  Export and mesopelagic particle flux during a North Atlantic spring diatom bloom , 2011 .

[12]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[13]  M. Iwataki,et al.  Proposal of identification criteria for resting spores of Chaetoceros species (Bacillariophyceae) from a temperate coastal sea , 2011 .

[14]  R. Krawiec Autecology and clonal variability of the marine centric diatom Thalassiosira rotula (Bacillariophyceae) in response to light, temperature and salinity , 1982 .

[15]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[16]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[17]  W. Peterson,et al.  An unusual bloom of the dinoflagellate Akashiwo sanguinea off the central Oregon, USA, coast in autumn 2009 , 2011 .

[18]  R. Guillard,et al.  A method for the rapid and precise determination of acclimated phytoplankton reproduction rates , 1981 .

[19]  Jan O. Backhaus,et al.  Convection and primary production in winter , 2003 .

[20]  D. Karl,et al.  Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA , 1999 .

[21]  D. M. Nelson,et al.  Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation , 1995 .

[22]  L. A. Hobson,et al.  DIATOM RESTING STAGES , 1996 .

[23]  D. Hutchins,et al.  Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response , 2009 .

[24]  W. Sunda,et al.  Interrelated influence of iron, light and cell size on marine phytoplankton growth , 1997, Nature.

[25]  R. B. Pearce,et al.  Estimating carbon, silica and diatom export from a naturally fertilised phytoplankton bloom in the Southern Ocean using PELAGRA: a novel drifting sediment trap , 2007 .

[26]  C. Tomas,et al.  Identifying marine phytoplankton , 1997 .

[27]  Gurvan Madec,et al.  Potential impact of climate change on marine export production , 2001 .

[28]  Vera Pospelova,et al.  Organic-walled dinoflagellate cyst production, composition and flux from 1996 to 1998 in the central Strait of Georgia (BC, Canada): A sediment trap study , 2010 .

[29]  K. Buesseler The decoupling of production and particulate export in the surface ocean , 1998 .

[30]  T. Moisan,et al.  Modelling the effect of temperature on the maximum growth rates of phytoplankton populations , 2002 .

[31]  The Evolutionary Significance of Phenotypic Plasticity , 2008 .

[32]  A. Heiskanen Mass encystment and sinking of dinoflagellates during a spring bloom , 1993 .

[33]  C. Sakamoto,et al.  Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean , 2007 .

[34]  G. Nehrke,et al.  Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry , 2009 .

[35]  Andreas Oschlies,et al.  Nitrogen Fixation and Temperature Physiological Constraints on the Global Distribution of Trichodesmium – Effect of Temperature on Diazotrophy Nitrogen Fixation and Temperature , 2022 .

[36]  Fei-xue Fu,et al.  Global change and the future of harmful algal blooms in the ocean , 2012 .

[37]  A. Alldredge,et al.  Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates , 1989 .

[38]  P. Falkowski,et al.  Effects of Growth Irradiance and Nitrogen Limitation on Photosynthetic Energy Conversion in Photosystem II. , 1988, Plant physiology.

[39]  H. Hoppe,et al.  Bacterial growth and primary production along a north–south transect of the Atlantic Ocean , 2002, Nature.

[40]  U. Passow,et al.  Factors influencing the sinking of POC and the efficiency of the biological carbon pump , 2007 .

[41]  Andreas Oschlies,et al.  Can we predict the direction of marine primary production change under global warming? , 2011 .

[42]  Mridul K. Thomas,et al.  Phytoplankton niches, traits and eco-evolutionary responses to global environmental change , 2012 .

[43]  Giacomo R. DiTullio,et al.  Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea , 2007 .

[44]  M. Hoppenrath,et al.  Dinoflagellate diversity and distribution , 2008, Biodiversity and Conservation.

[45]  J. Sarmiento,et al.  Decadal variability in North Atlantic phytoplankton blooms , 2009 .

[46]  S. Doney,et al.  Modelling regional responses by marine pelagic ecosystems to global climate change , 2002 .

[47]  S. Stearns The Evolutionary Significance of Phenotypic PlasticityPhenotypic sources of variation among organisms can be described by developmental switches and reaction norms , 1989 .

[48]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[49]  Samuel Cirés,et al.  Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions , 2010 .

[50]  Sam-Geun Lee,et al.  Impacts of Temperature, Salinity and Irradiance on the Growth of Ten Harmful Algal Bloom-forming Microalgae Isolated in Korean Coastal Waters , 2005 .

[51]  S. Nagai,et al.  Development of compound microsatellite markers in red‐tide‐causing dinoflagellate Akashiwo sanguinea (Dinophyceae) , 2009, Molecular ecology resources.

[52]  P. Boyd,et al.  Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: Uptake of organically complexed iron and reduced cellular iron requirements , 2011 .

[53]  Sallie W. Chisholm,et al.  Emergent Biogeography of Microbial Communities in a Model Ocean , 2007, Science.

[54]  G. C. Stevens The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics , 1989, The American Naturalist.

[55]  Dolors Vaqué,et al.  Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[57]  M. Kemp,et al.  Potential climate-change impacts on the Chesapeake Bay , 2008 .

[58]  Fei-xue Fu,et al.  Nutrient Cycles and Marine Microbes in a CO2-Enriched Ocean , 2009 .

[59]  J. Raven,et al.  Temperature and algal growth , 1988 .

[60]  C. Deutsch,et al.  The sequestration efficiency of the biological pump , 2012 .

[61]  M. Veldhuis,et al.  Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation , 2005 .

[62]  M. Long,et al.  Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages , 2009 .

[63]  Scott C. Doney,et al.  Response of ocean ecosystems to climate warming , 2004 .

[64]  Harmful algal bloom causative collected from Hong Kong waters , 2004 .

[65]  Ulf Riebesell,et al.  Species‐specific responses of calcifying algae to changing seawater carbonate chemistry , 2006 .

[66]  Elena Litchman,et al.  A Global Pattern of Thermal Adaptation in Marine Phytoplankton , 2012, Science.

[67]  E. Costas Genetic variability in growth rates of marine dinoflagellates , 1990, Genetica.

[68]  J. L. Hansen,et al.  Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material , 1993 .

[69]  F. Tailor The biology of Dinoflagellates , 1987 .

[70]  S. Collins Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2 , 2010, Proceedings of the Royal Society B: Biological Sciences.

[71]  J. G. Sanders,et al.  Reduction of growth rate and resting spore formation in a marine diatom exposed to low levels of cadmium , 1985 .

[72]  W. Sunda,et al.  Iron uptake and growth limitation in oceanic and coastal phytoplankton , 1995 .

[73]  David Lindley,et al.  Introduction to the Practice of Statistics , 1990, The Mathematical Gazette.

[74]  H. Nevins,et al.  Summary of Birds Killed by a Harmful Algal Bloom along the South Washington and North Oregon Coasts During October 20091 , 2011 .

[75]  Wkw Li Photosynthetic response to temperature of marine phytoplankton along a latitudinal gradient (16°N to 74°N) , 1985 .

[76]  Fei-xue Fu,et al.  EFFECTS OF INCREASED TEMPERATURE AND CO2 ON PHOTOSYNTHESIS, GROWTH, AND ELEMENTAL RATIOS IN MARINE SYNECHOCOCCUS AND PROCHLOROCOCCUS (CYANOBACTERIA) 1 , 2007 .

[77]  A. Kamatani,et al.  Resting spore formation and biochemical composition of the marine planktonic diatom Chaetoceros pseudocurvisetus in culture: ecological significance of decreased nucleotide content and activation of the xanthophyll cycle by resting spore formation , 1999 .

[78]  Paul G. Falkowski,et al.  A consumer's guide to phytoplankton primary productivity models , 1997 .

[79]  Timothy P. Boyer,et al.  NOAA Atlas NESDIS 61 , 2006 .

[80]  Scott C. Doney,et al.  Evaluating global ocean carbon models: The importance of realistic physics , 2004 .

[81]  I. Salter,et al.  Particle export from the euphotic zone: Estimates using a novel drifting sediment trap, 234Th and new production , 2008 .

[82]  G. Pitcher Phytoplankton seed populations of the cape peninsula upwelling plume, with particular reference to resting spores of Chaetoceros (bacillariophyceae) and their role in seeding upwelling waters , 1990 .

[83]  B. Tilbrook,et al.  Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: changes in 2001 to 2006 compared to historical data , 2007 .

[84]  M. Menezes,et al.  Taxonomic remarks on planktonic phytoflagellates in a hypertrophic tropical lagoon (Brazil) , 1998, Hydrobiologia.

[85]  C. Rahbek,et al.  Communities Under Climate Change , 2011, Science.

[86]  Robert J Olson,et al.  Molecular subdivision of the marine diatom Thalassiosira rotula in relation to geographic distribution, genome size, and physiology , 2012, BMC Evolutionary Biology.

[87]  G. Wolff,et al.  Diatom resting spore ecology drives enhanced carbon export from a naturally iron‐fertilized bloom in the Southern Ocean , 2012 .

[88]  Alice L. Alldredge,et al.  Aggregation of a diatom bloom in a mesocosm: The role of transparent exopolymer particles (TEP) , 1995 .

[89]  D. M. Pratt The Phytoplankton of Narragansett Bay1 , 1959 .

[90]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[91]  A. Alldredge,et al.  Mass aggregation of diatom blooms: Insights from a mesocosm study , 1995 .

[92]  F. Azam,et al.  Accelerated dissolution of diatom silica by marine bacterial assemblages , 1999, Nature.

[93]  Susanne Menden-Deuer,et al.  Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton , 2000 .

[94]  T. pseudonana Thalassiosira oceanica and T . pseudonana : two different photoadaptational responses , 2006 .

[95]  Eduardo Costas,et al.  Warming will affect phytoplankton differently: evidence through a mechanistic approach , 2011, Proceedings of the Royal Society B: Biological Sciences.

[96]  K. Banse Rates of phytoplankton cell division in the field and in iron enrichment experiments , 1991 .

[97]  Jon Norberg,et al.  Biodiversity and ecosystem functioning: A complex adaptive systems approach , 2004 .

[98]  J. Hollibaugh,et al.  OBSERVATIONS ON THE SURVIVAL AND GERMINATION OF RESTING SPORES OF THREE CHAETOCEROS (BACILLARIOPHYCEAE) SPECIES 1, 2 , 1981 .

[99]  Julie R. Etterson,et al.  Constraint to Adaptive Evolution in Response to Global Warming , 2001, Science.

[100]  Bruce E. Logan,et al.  The abundance and significance of a class of large, transparent organic particles in the ocean , 1993 .

[101]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[102]  M. Sieracki,et al.  Plankton community response to sequential silicate and nitrate depletion during the 1989 North Atlantic spring bloom , 1993 .

[103]  Corinne Le Quéré,et al.  Role of Marine Biology in Glacial-Interglacial CO2 Cycles , 2005, Science.

[104]  Ricardo M Letelier,et al.  Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation , 2012, Proceedings of the National Academy of Sciences.

[105]  Fei-xue Fu,et al.  Linking the Oceanic Biogeochemistry of Iron and Phosphorus with the Marine Nitrogen Cycle , 2008 .

[106]  P. Boyd,et al.  Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change , 2012 .

[107]  S. Levitus,et al.  World ocean atlas 2013. Volume 1, Temperature , 2002 .

[108]  F. G. Plumley,et al.  Harmful algal blooms and red tide problems on the U.S. west coast , 1997 .

[109]  S. Levitus,et al.  Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems , 2007 .

[110]  L. Cahoon,et al.  Viable diatoms and chlorophylla in continental slope sediments off Cape Hatteras, North Carolina , 1994 .

[111]  Nicholas R. Bates,et al.  Pelagic functional group modeling: Progress, challenges and prospects , 2006 .

[112]  John P. Ryan,et al.  Mass Stranding of Marine Birds Caused by a Surfactant-Producing Red Tide , 2009, PloS one.

[113]  Vera L. Trainer,et al.  The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems , 2010 .

[114]  S. Beaulieu Accumulation and fate of phytodetritus on the sea floor , 2002 .

[115]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[116]  I. Suto The explosive diversification of the diatom genus Chaetoceros across the Eocene/Oligocene and Oligocene/Miocene boundaries in the Norwegian Sea , 2006 .

[117]  P. Hargraves,et al.  Diatom resting spores: significance and strategies. , 1983 .

[118]  M. Heath,et al.  Seasonal and interannual variation in the phytoplankton community in the north east of Scotland , 2009 .

[119]  E. Virginia Armbrust,et al.  GENETIC DIFFERENTIATION AMONG POPULATIONS OF THE PLANKTONIC MARINE DIATOM DITYLUM BRIGHTWELLII (BACILLARIOPHYCEAE) 1 , 2004 .

[120]  M. Mulholland,et al.  The fate of nitrogen fixed by diazotrophs in the ocean , 2007 .

[121]  O. Ragueneau,et al.  Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump , 2006 .

[122]  R. Lande,et al.  Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory , 2010, PLoS biology.

[123]  M. Fasham,et al.  Ocean biogeochemistry: the role of the ocean carbon cycle in global change , 2003 .

[124]  O. Anderson THE ULTRASTRUCTURE AND CYTOCHEMISTRY OF RESTING CELL FORMATION IN AMPHORA COFFAEFORMIS (BACILLARIOPHYCEAE) 1 , 1975 .

[125]  T. Smayda Biogeographical Studies of Marine Phytoplankton , 1958 .

[126]  Syukuro Manabe,et al.  Simulated response of the ocean carbon cycle to anthropogenic climate warming , 1998, Nature.

[127]  J. Cloern,et al.  Climate anomalies generate an exceptional dinoflagellate bloom in San Francisco Bay , 2005 .

[128]  P. Thompson,et al.  Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms , 1997 .

[129]  C. Ekberg,et al.  Relationship between planktonic dinoflagellate abundance, cysts recovered in sediment traps and environmental factors in the Gullmar Fjord, Sweden , 2001 .

[130]  Scarla J. Weeks,et al.  Greenhouse gas, upwelling‐favorable winds, and the future of coastal ocean upwelling ecosystems , 2010 .

[131]  D. Garrison Monterey Bay Phytoplankton. II. Resting Spore Cycles in Coastal Diatom Populations , 1981 .

[132]  Andrew Hansen,et al.  Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean , 2001, Nature.

[133]  S. Doney,et al.  The Impact of Climate Change and Feedback Processes on the Ocean Carbon Cycle , 2003 .

[134]  Craig M. Lee,et al.  High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom , 2011 .

[135]  Ulf Riebesell,et al.  Guide to best practices for ocean acidification research and data reporting , 2011 .

[136]  R. Sanders,et al.  Basin-scale variability of phytoplankton bio-optical characteristics in relation to bloom state and community structure in the Northeast Atlantic , 2005 .

[137]  K. Lindsay,et al.  Climate-mediated changes to mixed-layer properties in the Southern Ocean : assessing the phytoplankton response , 2007 .

[138]  T. Rynearson,et al.  DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii , 2000 .

[139]  D. B. Nedwell,et al.  Temperature Dependence of Inorganic Nitrogen Uptake: Reduced Affinity for Nitrate at Suboptimal Temperatures in Both Algae and Bacteria , 1999, Applied and Environmental Microbiology.

[140]  H. Levene Robust tests for equality of variances , 1961 .

[141]  G. Fryxell,et al.  Thalassiosira antarctica: vegetative and resting stage chemical composition of an ice-related marine diatom , 1983 .

[142]  A. L. Rice,et al.  Seasonal sedimentation of phytoplankton to the deep-sea benthos , 1983, Nature.

[143]  Tyler Volk,et al.  Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean‐Driven Atmospheric CO2 Changes , 2013 .

[144]  K. Matsuoka,et al.  Seasonal change of dinoflagellates cyst flux collected in a sediment trap in Omura Bay, West Japan , 2006 .

[145]  Gerhard Kuhn,et al.  Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean , 2006 .

[146]  N. P. Holliday,et al.  Water masses and circulation pathways through the Iceland Basin during Vivaldi 1996 , 2004 .

[147]  T. Romanuk,et al.  Robustness to thermal variability differs along a latitudinal gradient in zooplankton communities , 2012 .

[148]  Louis Legendre,et al.  Fluxes of carbon in the upper ocean: regulation by food-web control nodes , 2002 .

[149]  J. Canadell,et al.  Global and regional drivers of accelerating CO2 emissions , 2007, Proceedings of the National Academy of Sciences.

[150]  M. Degerlund,et al.  Main Species Characteristics of Phytoplankton Spring Blooms in NE Atlantic and Arctic Waters (68–80° N) , 2010 .

[151]  P. C. Reid,et al.  A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years , 2007 .

[152]  Ø. Moestrup,et al.  The genus Chaetoceros (Bacillariophyceae) in inner Danish coastal waters , 1998 .

[153]  David G. Mann,et al.  The species concept in diatoms , 1999 .

[154]  F. Chavez,et al.  Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics , 2006, Nature.

[155]  C. Hurd,et al.  TESTING THE EFFECTS OF OCEAN ACIDIFICATION ON ALGAL METABOLISM: CONSIDERATIONS FOR EXPERIMENTAL DESIGNS 1 , 2009, Journal of phycology.

[156]  A. Kuwata,et al.  Life-form population responses of a marine planktonic diatom,Chaetoceros pseudocurvisetus, to oligotrophication in regionally upwelled water , 1990 .

[157]  Jan Kaiser,et al.  Estimates of net community production and export using high-resolution, Lagrangian measurements of O2, NO3−, and POC through the evolution of a spring diatom bloom in the North Atlantic , 2012 .

[158]  L. Boicenco,et al.  An annotated checklist of dinoflagellates in the Black Sea , 2004, Hydrobiologia.

[159]  S. Doney,et al.  Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean , 2001 .

[160]  P. Boyd,et al.  Environmental control of open‐ocean phytoplankton groups: Now and in the future , 2010 .

[161]  P. Tréguer,et al.  Resolving the ‘opal paradox’ in the Southern Ocean , 2000, Nature.

[162]  Deborah K. Steinberg,et al.  Upper Ocean Carbon Export and the Biological Pump , 2001 .

[163]  Y. Shimasaki,et al.  Effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea , 2007 .

[164]  D. Hernández-Becerril,et al.  Marine diatoms from Buenos Aires coastal waters (Argentina).V. Species of the genus Chaetoceros , 2008 .

[165]  B. Quéguiner,et al.  Effect of natural iron fertilization on carbon sequestration in the Southern Ocean , 2007, Nature.

[166]  A. Tsuda,et al.  Selection and viability after ingestion of vegetative cells, resting spores and resting cells of the marine diatom, Chaetoceros pseudocurvisetus, by two copepods , 2005 .

[167]  C. Lange,et al.  Self-sedimentation of phytoplankton blooms in the geologic record , 1997 .

[168]  R. Andersen,et al.  Diversity of eukaryotic algae , 1992, Biodiversity & Conservation.

[169]  A. Longhurst Ecological Geography of the Sea , 1998 .

[170]  A. Kuwata,et al.  Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocun/isetus, formed under nutrient depletion , 1993 .

[171]  P. Boyd,et al.  Inorganic carbon uptake by Southern Ocean phytoplankton , 2008 .

[172]  V. Smetácek Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance , 1985 .

[173]  K Maxwell,et al.  Chlorophyll fluorescence--a practical guide. , 2000, Journal of experimental botany.