Training neural networks by stochastic optimisation

We present a stochastic learning algorithm for neural networks. The algorithm does not make any assumptions about transfer functions of individual neurons and does not depend on a functional form o ...

[1]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[2]  Roberto Brunelli,et al.  Training neural nets through stochastic minimization , 1994, Neural Networks.

[3]  Eric Backer,et al.  Finding point correspondences using simulated annealing , 1995, Pattern Recognit..

[4]  Werner Ebeling,et al.  Optimization of NP-Complete Problems by Boltzmann-Darwin Strategies Including Life Cycles , 1988 .

[5]  Marwan A. Jabri,et al.  Weight perturbation: an optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer networks , 1992, IEEE Trans. Neural Networks.

[6]  Klaus-Robert Müller,et al.  Statistical Theory of Overtraining - Is Cross-Validation Asymptotically Effective? , 1995, NIPS.

[7]  N. Baba Convergence of a random optimization method for constrained optimization problems , 1981 .

[8]  K. P. Unnikrishnan,et al.  Alopex: A Correlation-Based Learning Algorithm for Feedforward and Recurrent Neural Networks , 1994, Neural Computation.

[9]  Hyun Seung Yang,et al.  Robust image segmentation using genetic algorithm with a fuzzy measure , 1996, Pattern Recognit..

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Stephen T. Barnard,et al.  A Stochastic Approach to Stereo Vision , 1986, AAAI.

[12]  Thomas Kailath,et al.  Model-free distributed learning , 1990, IEEE Trans. Neural Networks.

[13]  R. L. Anderson,et al.  RECENT ADVANCES IN FINDING BEST OPERATING CONDITIONS , 1953 .

[14]  Kenneth A. De Jong,et al.  Are Genetic Algorithms Function Optimizers? , 1992, PPSN.

[15]  P. Carnevali,et al.  Image processing by stimulated annealing , 1985 .

[16]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[17]  Lane A. Hemaspaandra,et al.  Using simulated annealing to design good codes , 1987, IEEE Trans. Inf. Theory.

[18]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[19]  Antanas Verikas,et al.  Colour image segmentation by modular neural network , 1997, Pattern Recognit. Lett..

[20]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[21]  Edward J. Delp,et al.  A Cost Minimization Approach to Edge Detection Using Simulated Annealing , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  L. Darrell Whitley,et al.  Genetic algorithms and neural networks: optimizing connections and connectivity , 1990, Parallel Comput..

[23]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[24]  Marc Parizeau,et al.  Optimizing the cost matrix for approximate string matching using genetic algorithms , 1998, Pattern Recognit..

[25]  Günther F. Schrack,et al.  Optimized relative step size random searches , 1976, Math. Program..

[26]  Norio Baba,et al.  A new approach for finding the global minimum of error function of neural networks , 1989, Neural Networks.

[27]  Yoh-Han Pao,et al.  Combinatorial optimization with use of guided evolutionary simulated annealing , 1995, IEEE Trans. Neural Networks.

[28]  Paolo Carnevali,et al.  Image Processing by Simulated Annealing , 1985, IBM J. Res. Dev..

[29]  Yoshio Mogami,et al.  A hybrid algorithm for finding the global minimum of error function of neural networks and its applications , 1994, Neural Networks.

[30]  W. M. Jenkins,et al.  Genetic Algorithms and Neural Networks , 1999, Neural Networks in the Analysis and Design of Structures.

[31]  Ron Meir,et al.  A Parallel Gradient Descent Method for Learning in Analog VLSI Neural Networks , 1992, NIPS.