Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup

We present a revised global plate motion model with continuously closing plate boundaries ranging from the Triassic at 230 Ma to the present day, assess differences among alternative absolute plate motion models, and review global tectonic events. Relatively high mean absolute plate motion rates of approximately 9–10 cm yr^(−1) between 140 and 120 Ma may be related to transient plate motion accelerations driven by the successive emplacement of a sequence of large igneous provinces during that time. An event at ∼100 Ma is most clearly expressed in the Indian Ocean and may reflect the initiation of Andean-style subduction along southern continental Eurasia, whereas an acceleration at ∼80 Ma of mean rates from 6 to 8 cm yr^(−1) reflects the initial northward acceleration of India and simultaneous speedups of plates in the Pacific. An event at ∼50 Ma expressed in relative, and some absolute, plate motion changes around the globe and in a reduction of global mean plate speeds from about 6 to 4–5 cm yr^(−1) indicates that an increase in collisional forces (such as the India–Eurasia collision) and ridge subduction events in the Pacific (such as the Izanagi–Pacific Ridge) play a significant role in modulating plate velocities.

[1]  M. Seton,et al.  A reconstruction of the North Atlantic since the earliest Jurassic , 2018 .

[2]  R. Müller,et al.  Global plate boundary evolution and kinematics since the late Paleozoic , 2016 .

[3]  S. Micklethwaite,et al.  Melanesian back-arc basin and arc development: constraints from the eastern Coral Sea , 2016 .

[4]  R. Müller,et al.  Tectonic evolution of Western Tethys from Jurassic to present day: coupling geological and geophysical data with seismic tomography models , 2016 .

[5]  R. Müller,et al.  The Late Cretaceous to recent tectonic history of the Pacific Ocean basin , 2016 .

[6]  R. Müller,et al.  A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys , 2015 .

[7]  M. Gurnis,et al.  A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc , 2015 .

[8]  R. Müller,et al.  Semiautomatic fracture zone tracking , 2015 .

[9]  R. Müller,et al.  Absolute plate motion of Africa around Hawaii-Emperor bend time , 2015 .

[10]  R. Müller,et al.  Long-term interaction between mid-ocean ridges and mantle plumes , 2015 .

[11]  R. Müller,et al.  Absolute plate motions since 130 Ma constrained by subduction zone kinematics , 2015 .

[12]  R. Müller,et al.  Tectonic speed limits from plate kinematic reconstructions , 2015 .

[13]  R. Müller,et al.  Ridge subduction sparked reorganization of the Pacific plate‐mantle system 60–50 million years ago , 2015 .

[14]  J. Dyment,et al.  The Cretaceous opening of the South Atlantic Ocean , 2015 .

[15]  A. Muxworthy,et al.  Long duration (>4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná–Etendeka Large Igneous Province: New palaeomagnetic data from Namibia , 2015 .

[16]  C. Ré,et al.  A Machine Reading System for Assembling Synthetic Paleontological Databases , 2014, PloS one.

[17]  Walter H. F. Smith,et al.  New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure , 2014, Science.

[18]  R. Müller,et al.  Circum‐Arctic mantle structure and long‐wavelength topography since the Jurassic , 2014 .

[19]  C. Johnson,et al.  Deep crustal structure in the eastern Gulf of Mexico , 2014 .

[20]  R. Müller,et al.  Pacific plate slab pull and intraplate deformation in the early Cenozoic , 2014 .

[21]  E. Lau,et al.  Plate tectonic raster reconstruction in GPlates , 2014 .

[22]  H. Bunge,et al.  Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: Evidence for temporal changes of pressure‐driven upper mantle flow , 2014 .

[23]  R. Müller,et al.  Community infrastructure and repository for marine magnetic identifications , 2014 .

[24]  M. Sambridge,et al.  REDBACK: Open‐source software for efficient noise‐reduction in plate kinematic reconstructions , 2014 .

[25]  Rhys Hawkins,et al.  Bayesian noise‐reduction in Arabia/Somalia and Nubia/Arabia finite rotations since ∼20 Ma: Implications for Nubia/Somalia relative motion , 2014 .

[26]  W. Jokat,et al.  Tectonic reconstructions for paleobathymetry in Drake Passage , 2014 .

[27]  R. Müller,et al.  Convergence of tectonic reconstructions and mantle convection models for significant fluctuations in seafloor spreading , 2013 .

[28]  R. Müller,et al.  Full-fit reconstruction of the Labrador Sea and Baffin Bay , 2013 .

[29]  R. Müller,et al.  The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure , 2013 .

[30]  W. Spakman,et al.  Kinematic reconstruction of the Caribbean region since the Early Jurassic , 2013 .

[31]  R. Müller,et al.  The Cretaceous and Cenozoic tectonic evolution of Southeast Asia , 2013 .

[32]  R. Müller,et al.  Seawater chemistry driven by supercontinent assembly, breakup, and dispersal , 2013 .

[33]  R. Müller,et al.  Organization of the tectonic plates in the last 200 Myr , 2013 .

[34]  R. Müller,et al.  Revised tectonic evolution of the Eastern Indian Ocean , 2013 .

[35]  Richard E. Ernst,et al.  Periodicities in the emplacement of large igneous provinces through the Phanerozoic: Relations to ocean chemistry and marine biodiversity evolution , 2013 .

[36]  R. Müller,et al.  Geologic and kinematic constraints on Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific , 2013 .

[37]  R. Müller,et al.  The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best‐fit tectonic model , 2013 .

[38]  J. Stock,et al.  Revised Eocene‐Oligocene kinematics for the West Antarctic rift system , 2013 .

[39]  C. Heine,et al.  Kinematics of the South Atlantic rift , 2013, 1301.2096.

[40]  M. Nørgaard,et al.  Rifting, subsidence and continental break-up above a mantle plume in the central South Atlantic , 2013 .

[41]  Maria Seton,et al.  Lower mantle structure from paleogeographically constrained dynamic Earth models , 2013 .

[42]  Garry D. Karner,et al.  Inverse methods for modeling non-rigid plate kinematics: Application to mesozoic plate reconstructions of the Central Atlantic , 2012, Comput. Geosci..

[43]  R. Müller,et al.  A global-scale plate reorganization event at 105−100 Ma , 2012 .

[44]  B. Steinberger,et al.  Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans , 2012 .

[45]  E. Tohver,et al.  Phanerozoic polar wander, palaeogeography and dynamics , 2012 .

[46]  Maria Seton,et al.  Global continental and ocean basin reconstructions since 200 Ma , 2012 .

[47]  N. Coltice,et al.  Dynamic Causes of the Relation Between Area and Age of the Ocean Floor , 2012, Science.

[48]  J. Dyment,et al.  Geomagnetic field variability during the Cretaceous Normal Superchron , 2012 .

[49]  R. Müller,et al.  Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure , 2012 .

[50]  R. Müller,et al.  The tectonic fabric of the ocean basins , 2011 .

[51]  R. Müller,et al.  Full‐fit, palinspastic reconstruction of the conjugate Australian‐Antarctic margins , 2011 .

[52]  A. Jellinek,et al.  Viscous coupling at the lithosphere‐asthenosphere boundary , 2011 .

[53]  James A. Clark,et al.  Next-generation plate-tectonic reconstructions using GPlates , 2011 .

[54]  Maisha Amaru,et al.  Towards absolute plate motions constrained by lower-mantle slab remnants , 2010 .

[55]  M. Fournier,et al.  Arabia‐Somalia plate kinematics, evolution of the Aden‐Owen‐Carlsberg triple junction, and opening of the Gulf of Aden , 2010 .

[56]  M. Gurnis,et al.  Plate tectonics and net lithosphere rotation over the past 150 My , 2010 .

[57]  C. Faccenna,et al.  The opening of Sirte basin: Result of slab avalanching? , 2009 .

[58]  R. Müller,et al.  Global plate motion frames: Toward a unified model , 2008 .

[59]  P. Wessel,et al.  Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis , 2008 .

[60]  D. Stegman,et al.  Global trench migration velocities and slab migration induced upper mantle volume fluxes: Constraints to find an Earth reference frame based on minimizing viscous dissipation , 2008 .

[61]  B. Steinberger,et al.  Absolute plate motions and true polar wander in the absence of hotspot tracks , 2008, Nature.

[62]  R. Müller,et al.  Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics , 2008, Science.

[63]  G. Morra,et al.  Evidence of lower-mantle slab penetration phases in plate motions , 2008, Nature.

[64]  M. Kumar,et al.  The rapid drift of the Indian tectonic plate , 2007, Nature.

[65]  Ralph Müller,et al.  Major Australian-Antarctic Plate Reorganization at Hawaiian-Emperor Bend Time , 2007, Science.

[66]  J. Tarduno On the motion of Hawaii and other mantle plumes , 2007 .

[67]  V. Courtillot,et al.  Mean age of oceanic lithosphere drives eustatic sea-level change since Pangea breakup , 2006 .

[68]  B. Steinberger,et al.  On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames , 2005 .

[69]  P. Bird An updated digital model of plate boundaries , 2003 .

[70]  J. Royer,et al.  Statistical tools for estimating and combining finite rotations and their uncertainties , 2002 .

[71]  Kerstin Lehnert,et al.  A global geochemical database structure for rocks , 2000 .

[72]  W. Roest,et al.  Asymmetric sea-floor spreading caused by ridge–plume interactions , 1998, Nature.

[73]  B. Steinberger,et al.  Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution , 1998 .

[74]  R. Dietmar Müller,et al.  Digital isochrons of the world's ocean floor , 1997 .

[75]  J. Channell Recalibration of the geomagnetic polarity timescale , 1995 .

[76]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[77]  Kazuo Kobayashi,et al.  A new Mesozoic isochron chart of the northwestern Pacific Ocean: Paleomagnetic and tectonic implications , 1992 .

[78]  S. J. Hellinger The uncertainties of finite rotations in plate tectonics , 1981 .

[79]  P. Rona,et al.  Early Cenozoic global plate reorganization , 1978 .

[80]  R. Larson,et al.  Late Mesozoic Evolution of the Western Pacific Ocean , 1972 .

[81]  D. Sandwell,et al.  Oceanic microplate formation records the onset of India-Eurasia collision , 2016 .

[82]  S. Cande,et al.  The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic , 2015 .

[83]  R. Müller,et al.  Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs , 2014 .

[84]  Mark Turner,et al.  Plate tectonic reconstructions with continuously closing plates , 2012, Comput. Geosci..

[85]  A. Schettino,et al.  Tectonic history of the western Tethys since the Late Triassic , 2011 .

[86]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[87]  J. Gee,et al.  Source of oceanic magnetic anomalies and the geomagnetic polarity time scale , 2007 .