Geometric nonlinear analysis of plates and cylindrical shells via a linearly conforming radial point interpolation method
暂无分享,去创建一个
K. Y. Dai | Xu Han | Gui-Rong Liu | G. Y. Li | Z. H. Zhong | Z. Zhong | X. Zhao | G. Liu | Xiu Song Zhao | X. Han | Xiu Song Zhao | Gui-Rong Liu
[1] J. Reddy. Mechanics of laminated composite plates and shells : theory and analysis , 1996 .
[2] Hirohisa Noguchi,et al. Element free analyses of shell and spatial structures , 2000 .
[3] K. Y. Dai,et al. A radial point interpolation method for simulation of two-dimensional piezoelectric structures , 2003 .
[4] Guirong Liu,et al. A point interpolation method for two-dimensional solids , 2001 .
[5] R. Hauptmann,et al. A SYSTEMATIC DEVELOPMENT OF 'SOLID-SHELL' ELEMENT FORMULATIONS FOR LINEAR AND NON-LINEAR ANALYSES EMPLOYING ONLY DISPLACEMENT DEGREES OF FREEDOM , 1998 .
[6] Chang-Koon Choi,et al. An effective four node degenerated shell element for geometrically nonlinear analysis , 1996 .
[7] J. C. Simo,et al. On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .
[8] J. L. Sanders,et al. NONLINEAR THEORIES FOR THIN SHELLS , 1963 .
[9] Guangyao Li,et al. A linearly conforming point interpolation method (LC‐PIM) for three‐dimensional elasticity problems , 2007 .
[10] T. Belytschko,et al. Nodal integration of the element-free Galerkin method , 1996 .
[11] Ni Sheng,et al. Stabilized conforming nodal integration: exactness and variational justification , 2004 .
[12] W. Hao,et al. Numerical simulations of large deformation of thin shell structures using meshfree methods , 2000 .
[13] Sivakumar Kulasegaram,et al. Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .
[14] K. Y. Dai,et al. A LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD FOR SOLID MECHANICS PROBLEMS , 2006 .
[15] J. C. Simo,et al. On a stress resultant geometrically exact shell model , 1990 .
[16] Guirong Liu,et al. A point interpolation meshless method based on radial basis functions , 2002 .
[17] T. Belytschko,et al. Analysis of thin shells by the Element-Free Galerkin method , 1996 .
[18] Jiun-Shyan Chen,et al. A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .
[19] Anthony N. Palazotto,et al. Nonlinear Analysis of Shell Structures , 1992 .
[20] J. N. Reddy,et al. Large deformation analysis of functionally graded shells , 2007 .
[21] R. L. Harder,et al. A proposed standard set of problems to test finite element accuracy , 1985 .
[22] A. B. Sabir,et al. The applications of finite elements to large deflection geometrically nonlinear behaviour of cylindrical shells , 1972 .
[23] Wing Kam Liu,et al. Stress projection for membrane and shear locking in shell finite elements , 1985 .
[24] M. A. Crisfield,et al. Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .
[25] K. Y. Sze,et al. Popular benchmark problems for geometric nonlinear analysis of shells , 2004 .
[26] K. Y. Sze,et al. An eight‐node hybrid‐stress solid‐shell element for geometric non‐linear analysis of elastic shells , 2002 .
[27] K. Y. Sze,et al. A hybrid stress nine-node degenerated shell element for geometric nonlinear analysis , 1999 .
[28] P. Bergan,et al. Nonlinear Shell Analysis Using Free Formulation Finite Elements , 1986 .