Selected reaction monitoring LC-MS determination of idoxifene and its pyrrolidinone metabolite in human plasma using robotic high-throughput, sequential sample injection.
暂无分享,去创建一个
The generation of large numbers of samples during early drug discovery has increased the demand for rapid and selective methods of analysis. Liquid chromatography-tandem mass spectrometry (LC-MS-MS), because of its sensitivity, selectivity, and robustness, has emerged as a powerful tool in the pharmaceutical industry for many analytical needs. This work presents a high-throughput selected reaction monitoring LC-MS bioanalytical method for the determination of idoxifene, a selective estrogen receptor modulator, and its pyrrolidinone metabolite in clinical human plasma samples. The described method uses short, small-bore columns, high flow rates, and elevated HPLC column temperatures to perform LC separations of idoxifene and its metabolite within 10 s/sample. Sequential injections were accomplished with a 215/889 multiple probe liquid handler (Gilson, Inc.), which aspirates eight samples simultaneously and performs its rinse cycle parallel to sample injection, resulting in minimum lag time between injections. This high-throughput method was applied to the determination of idoxifene and its metabolite in clinical human plasma samples. Sample preparation employed liquid/liquid extraction in the 96-well format. Method validation included determination of intra- and interassay accuracy and precision values, recovery studies, autosampler stability, and freeze-thaw stability. The LOQ obtained was 10 ng/mL for idoxifene and 30 ng/mL for the metabolite. Using idoxifene-d5 as an internal standard, idoxifene showed acceptable accuracy and precision values at QC level 1 (QC1, 15 ng/mL), level 2 (QC2, 100 ng/mL), and level 3 (QC3, 180 ng/mL) (85.0% accuracy +/- 12.0% precision, 95.1 +/- 4.9%, and 90.3 +/- 4.7%, respectively). The pyrrolidinone metabolite also showed acceptable accuracy and precision values (using no internal standard for quantitation) at QC1 (60 ng/mL), QC2 (100 ng/mL), and QC3 (180 ng/mL) (104.9 +/- 14.4%, 91.1 +/- 13.0%, and 90.8 +/- 12.2%, respectively). The validated method was applied to the analysis of 613 human clinical plasma samples. An average run time of 23 s/sample (approximately 37 min/ 96-well plate or over 3,700 sample/day) was achieved. The successful validation presented indicates that rapid methods of analysis can efficiently and reliably contribute to the fast sample turnaround required for high sample number generating processes.