On the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics

In this paper we apply a reduced basis framework for the computation of flow bifurcation (and stability) problems in fluid dynamics. The proposed method aims at reducing the complexity and the computational time required for the construction of bifurcation and stability diagrams. The method is quite general since it can in principle be specialized to a wide class of nonlinear problems, but in this work we focus on an application in incompressible fluid dynamics at low Reynolds numbers. The validation of the reduced order model with the full order computation for a benchmark cavity flow problem is promising.

[1]  Vladimir Temlyakov,et al.  CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS , 2022 .

[2]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants , 2013, Numerische Mathematik.

[3]  R. Glowinski,et al.  Numerical Analysis and Scientific Computing Preprint Seria Symmetry breaking and Hopf bifurcation for incompressible viscous flow in a contraction-expansion channel , 2014 .

[4]  Steven A. Orszag,et al.  Numerical Simulation of Low Mach Number Reactive Flows , 1997 .

[5]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[6]  Anthony T. Patera,et al.  A space–time variational approach to hydrodynamic stability theory , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[8]  Qiang Du,et al.  Model Reduction by Proper Orthogonal Decomposition Coupled With Centroidal Voronoi Tessellations (Keynote) , 2002 .

[9]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[10]  Assyr Abdulle,et al.  A Petrov-Galerkin reduced basis approximation of the Stokes equation in parameterized geometries , 2015 .

[11]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[12]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[13]  Annalisa Quaini,et al.  Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: Applications to Coanda effect in cardiology , 2017, J. Comput. Phys..

[14]  Paul Houston,et al.  Adaptivity and a Posteriori Error Control for Bifurcation Problems III: Incompressible Fluid Flow in Open Systems with O(2) Symmetry , 2012, J. Sci. Comput..

[15]  Wolfgang Dahmen HOW TO BEST SAMPLE A SOLUTION MANIFOLD , 2015 .

[16]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[17]  Pinhas Z. Bar-Yoseph,et al.  Stability of multiple steady states of convection in laterally heated cavities , 1999, Journal of Fluid Mechanics.

[18]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[19]  F. Brezzi,et al.  Finite Dimensional Approximation of Non-Linear Problems .3. Simple Bifurcation Points , 1981 .

[20]  Volker Mehrmann,et al.  Numerical methods for parametric model reduction in the simulation of disk brake squeal , 2016 .

[21]  S. Timoshenko Theory of Elastic Stability , 1936 .

[22]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[23]  Karin Schwab Numerical Simulation Of Oscillatory Convection In Low Pr Fluids , 2016 .

[24]  Giovanni P. Galdi,et al.  The Navier-Stokes Equations : A Mathematical Analysis , 2022 .

[25]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[26]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[27]  F. Takens,et al.  On the nature of turbulence , 1971 .

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  Ahmed K. Noor,et al.  Multiple‐parameter reduced basis technique for bifurcation and post‐buckling analyses of composite plates , 1983 .

[30]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[31]  Yvon Maday,et al.  A reduced basis element method for the steady stokes problem , 2006 .

[32]  Robert A. Meyers,et al.  Mathematics of Complexity and Dynamical Systems , 2011 .

[33]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[34]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[35]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[36]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[37]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[38]  Simone Deparis,et al.  Stabilized Reduced Basis Approximation of Incompressible Three-Dimensional Navier-Stokes Equations in Parametrized Deformed Domains , 2012, J. Sci. Comput..

[39]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[40]  Annalisa Quaini,et al.  Symmetry breaking and preliminary results about a Hopf bifurcation for incompressible viscous flow in an expansion channel , 2016 .

[41]  José M. Vega,et al.  On the use of POD-based ROMs to analyze bifurcations in some dissipative systems , 2012 .

[42]  Traian Iliescu,et al.  A numerical investigation of velocity-pressure reduced order models for incompressible flows , 2014, J. Comput. Phys..

[43]  Stefan Volkwein,et al.  Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition , 2003 .

[44]  Qiang Du,et al.  Centroidal Voronoi Tessellation Based Proper Orthogonal Decomposition Analysis , 2003 .

[45]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[46]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[47]  Yvon Maday,et al.  RB (Reduced basis) for RB (Rayleigh–Bénard) , 2013 .

[48]  D. Rovas,et al.  Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems , 2000 .