Current and future potential of solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble

[1]  J. Coplin Renewables , 2021, Engineering Sustainable Life on Earth.

[2]  B. Abiodun,et al.  Impacts of global warming on photovoltaic power generation over West Africa , 2020 .

[3]  M. Brito,et al.  Persistence of the high solar potential in Africa in a changing climate , 2019, Environmental Research Letters.

[4]  S. Anquetin,et al.  Potential impact of climate change on solar resource in Africa for photovoltaic energy: analyses from CORDEX-AFRICA climate experiments , 2019, Environmental Research Letters.

[5]  P. Soares,et al.  Climate change impact on Northwestern African offshore wind energy resources , 2019, Environmental Research Letters.

[6]  J. Aerts,et al.  Advancing global storm surge modelling using the new ERA5 climate reanalysis , 2019, Climate Dynamics.

[7]  Robert M. Graham,et al.  Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution , 2019, The Cryosphere.

[8]  Yongjun Zheng,et al.  Towards a Long-Term Reanalysis of Land Surface Variables over Western Africa: LDAS-Monde Applied over Burkina Faso from 2001 to 2018 , 2019, Remote. Sens..

[9]  B. Abiodun,et al.  Projected changes in wind energy potential over West Africa under the global warming of 1.5 °C and above , 2018, Theoretical and Applied Climatology.

[10]  R. Vautard,et al.  A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean , 2018, Climate Dynamics.

[11]  D. Kammen,et al.  The Role of Renewable Energy in Bridging the Electricity Gap in Africa , 2018, Current Sustainable/Renewable Energy Reports.

[12]  Yongjun Zheng,et al.  LDAS-Monde Sequential Assimilation of Satellite Derived Observations Applied to the Contiguous US: An ERA-5 Driven Reanalysis of the Land Surface Variables , 2018, Remote. Sens..

[13]  M. Reboita,et al.  Winds: intensity and power density simulated by RegCM4 over South America in present and future climate , 2018, Climate Dynamics.

[14]  S. Somot,et al.  The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble , 2018, Environmental Research Letters.

[15]  Robert Vautard,et al.  Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming , 2018 .

[16]  R. Vautard,et al.  Impact of evolving greenhouse gas forcing on the warming signal in regional climate model experiments , 2018, Nature Communications.

[17]  Jörg Trentmann,et al.  Trends and Variability of Surface Solar Radiation in Europe Based On Surface‐ and Satellite‐Based Data Records , 2018 .

[18]  N. Rahim,et al.  Effect of high irradiation and cooling on power, energy and performance of a PVT system , 2018 .

[19]  Philipp Blechinger,et al.  Visualizing National Electrification Scenarios for Sub-Saharan African Countries , 2017 .

[20]  F Lasnier,et al.  Photovoltaic Engineering Handbook , 2017 .

[21]  L. Bobylev,et al.  Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea , 2017, 1706.05207.

[22]  M. Wild,et al.  Impact of climate change on future concentrated solar power (CSP) production , 2017 .

[23]  M. Gómez-Gesteira,et al.  Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections , 2017 .

[24]  Barack Obama,et al.  The irreversible momentum of clean energy , 2017, Science.

[25]  Michel Rixen,et al.  WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6 , 2016 .

[26]  O. Coulibaly,et al.  Forecasted Changes in West Africa Photovoltaic Energy Output by 2045 , 2016 .

[27]  J. Trancik,et al.  Value of storage technologies for wind and solar energy , 2016 .

[28]  Luca Bugliaro,et al.  Do climate models project changes in solar resources , 2016 .

[29]  Samuel Asumadu-Sarkodie,et al.  A review of renewable energy sources, sustainability issues and climate change mitigation , 2016 .

[30]  Martin Wild,et al.  The impact of climate change on photovoltaic power generation in Europe , 2015, Nature Communications.

[31]  F. Giorgi,et al.  Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps , 2015 .

[32]  Björn Müller,et al.  Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems , 2015 .

[33]  Daniel M. Kammen,et al.  Decentralized energy systems for clean electricity access , 2015 .

[34]  L. Wald,et al.  Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface , 2015 .

[35]  Gareth Harrison,et al.  The UK solar energy resource and the impact of climate change , 2014 .

[36]  Alex de A. Fernandes,et al.  Multi-model ensemble: technique and validation , 2014 .

[37]  N. Elguindi,et al.  Assessment of CMIP5 global model simulations over the subset of CORDEX domains used in the Phase I CREMA , 2014, Climatic Change.

[38]  E. Coppola,et al.  Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections , 2014, Climatic Change.

[39]  J. Lilliestam,et al.  Vulnerability of solar energy infrastructure and output to climate change , 2013, Climatic Change.

[40]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[41]  N. Dunstone,et al.  The influence of anthropogenic aerosol on multi-decadal variations of historical global climate , 2013 .

[42]  G. Georgievski,et al.  Added value of convection permitting seasonal simulations , 2013, Climate Dynamics.

[43]  Corinna Hoose,et al.  The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation , 2012 .

[44]  G. Gualtieri,et al.  Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison , 2012 .

[45]  Ivan Güttler,et al.  RegCM4 : model description and preliminary tests over multiple CORDEX domains , 2012 .

[46]  P. Forster,et al.  Climate change impacts on future photovoltaic and concentrated solar power energy output , 2011 .

[47]  Congbin Fu,et al.  Assessment of GEWEX/SRB version 3.0 monthly global radiation dataset over China , 2011 .

[48]  F. Giorgi,et al.  Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis , 2010 .

[49]  George Makrides,et al.  Modeling the photovoltaic potential of a site , 2010 .

[50]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[51]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[52]  S. Solomon,et al.  Irreversible climate change due to carbon dioxide emissions , 2009, Proceedings of the National Academy of Sciences.

[53]  Peter E. Thornton,et al.  Improvements to the Community Land Model and their impact on the hydrological cycle , 2008 .

[54]  Ken Caldeira,et al.  Stabilizing climate requires near‐zero emissions , 2008 .

[55]  Govindasamy Tamizhmani,et al.  Photovoltaic Module Thermal/Wind Performance: Long-Term Monitoring and Model Development for Energy Rating , 2003 .

[56]  Jeremy S. Pal,et al.  Simulation of regional‐scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM , 2000 .

[57]  Robert E. Dickinson,et al.  Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data , 1998 .

[58]  P. Dias,et al.  Absorption of solar radiation by water vapor in the atmosphere. Part II: sensitivity tests with a general circulation model , 1997 .

[59]  James J. Hack,et al.  Description of the NCAR Community Climate Model (CCM3). Technical note , 1996 .

[60]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[61]  Albert A. M. Holtslag,et al.  Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model , 1993 .

[62]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[63]  A. Holtslag,et al.  A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting , 1990 .

[64]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[65]  J. Deardorff Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation , 1978 .

[66]  M. Wild,et al.  Numerical simulation of surface solar radiation over Southern Africa. Part 2: projections of regional and global climate models , 2019, Climate Dynamics.

[67]  T. Kåberger Progress of renewable electricity replacing fossil fuels , 2018 .

[68]  M. Wild,et al.  Numerical simulation of surface solar radiation over Southern Africa. Part 1: Evaluation of regional and global climate models , 2018, Climate Dynamics.

[69]  Kenneth Strzepek,et al.  The impact of climate change on wind and solar resources in southern Africa , 2016 .

[70]  Kathleen J. Hancock,et al.  The expanding horizon of renewable energy in sub-Saharan Africa: Leading research in the social sciences , 2015 .

[71]  Bharath Seshadri,et al.  Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review☆ , 2013 .

[72]  F. Giorgi Uncertainties in climate change projections, from the global to the regional scale , 2010 .

[73]  F. Giorgi,et al.  Addressing climate information needs at the regional level: the CORDEX framework , 2009 .