A dispersed polycrystalline phase boundary constructed in CaZrO3 modified KNN based ceramics with both excellent piezoelectric properties and thermal stability

[1]  Min Guo,et al.  Room temperature constructing rhombohedral-tetragonal phase boundary in novel (Bi, Na)(Zr, Ti)O3 modified (K, Na)(Nb, Sb)O3 ceramics: Phase structure, defect and piezoelectric performance , 2022, Ceramics International.

[2]  Zhi Tan,et al.  The roles of Sn4+ in affecting performance of Potassium Sodium Niobate ceramics , 2021, Journal of Alloys and Compounds.

[3]  Zhi Tan,et al.  High mechanical quality factor and piezoelectricity in potassium sodium niobate ceramics , 2021, Ceramics International.

[4]  Weipeng Liu,et al.  Effect of zirconium non-stoichiometry on phase structure and electrical properties of (K,Na)(Nb,Sb)O3-(Bi,Na)ZrO3 ceramics , 2021 .

[5]  Xihong Hao,et al.  Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary , 2020 .

[6]  Kui Chen,et al.  (Bi0.5Na0.5)ZrO3 modified KNN-based ceramics: Enhanced electrical properties and temperature insensitivity , 2020 .

[7]  Chunlin Zhao,et al.  Structure and domain wall dynamics in lead-free KNN-based ceramics , 2019, Journal of Applied Physics.

[8]  Longtu Li,et al.  Piezoelectric properties and temperature sensitivity for CaZrO3 doped KNN-based ceramics sintered in reducing atmosphere , 2019, Journal of Alloys and Compounds.

[9]  Nan Jiang,et al.  Dielectric and impedance spectroscopy analysis of lead-free (1-x)(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3-xBaTiO3 ceramics , 2019, Ceramics International.

[10]  Kai Yang,et al.  Relation of the phase transition and electrical, photoluminescence properties in (1 − x) Na0.5K0.5NbO3–xLiSbO3:0.006Dy3+ lead free ceramics , 2019, Journal of Materials Science: Materials in Electronics.

[11]  Gang Liu,et al.  Microstructures, phase evolution and electrical properties of (1-x)K0.40Na0.60Nb0.96Sb0.04O3-xBi0.5K0.5HfO3 lead-free ceramics , 2019, Ceramics International.

[12]  W. Yao,et al.  Highly temperature-stable piezoelectric properties of 0.96(K0.48Na0.52)(Nb0.96Sb0.04)O3–0.03BaZrO3–0.01(Bi0.50Na0.50)ZrO3 ceramic in common usage temperature range , 2019, Scripta Materialia.

[13]  J. Zhai,et al.  Enhanced piezoelectric performance and thermal stability of alkali niobate-based ceramics , 2019, Ceramics International.

[14]  S. Acharya,et al.  Low temperature synthesis of complex solid solution (1-x)Bi0.5Na0.5TiO3–xBaTiO3 system: BT induced structural and dielectric anomalies in NBT , 2018, Ferroelectrics.

[15]  Zhichen Wan,et al.  Enhanced temperature-stability in tunable dielectric properties of (1-x) (K 0.49 Na 0.49 Li 0.02 )(Nb 0.8 Ta 0.2 )O 3 -xCaZrO 3 ceramics , 2018 .

[16]  Zhi Tan,et al.  Study of the relationships among the crystal structure, phase transition behavior and macroscopic properties of modified (K,Na)NbO3-based lead-free piezoceramics , 2018 .

[17]  Gyoung-Ja Lee,et al.  Properties of (Bi,M)ZrO3 (M: alkali metals)-modified (K,Na)NbO3 lead-free piezoceramics , 2017 .

[18]  Zhi Tan,et al.  The piezoelectric and dielectric properties of sodium–potassium niobate ceramics with new multiphase boundary , 2017, Journal of Materials Science: Materials in Electronics.

[19]  Gang Liu,et al.  Effects of Bi0.5Na0.5HfO3 addition on the phase structure and piezoelectric properties of (K, Na)NbO3‐based ceramics , 2017 .

[20]  J. Zhai,et al.  Enhanced electromechanical properties of CaZrO3-modified (K0.5Na0.5)NbO3-based lead-free ceramics , 2017 .

[21]  Longtu Li,et al.  Defect engineering of high‐performance potassium sodium niobate piezoelectric ceramics sintered in reducing atmosphere , 2017 .

[22]  Longtu Li,et al.  Defect control for enhanced piezoelectric properties in SnO2 and ZrO2 co-modified KNN ceramics fired under reducing atmosphere , 2017 .

[23]  Jianguo Zhu,et al.  The structural origin of enhanced piezoelectric performance and stability in lead free ceramics , 2017 .

[24]  H. Duan,et al.  Phase transition and piezoelectric properties of dense (K0.48,Na0.52)0.95Li0.05SbxNb(1−x)O3-0.03Ca0.5(Bi0.5,Na0.5)0.5ZrO3 lead free ceramics , 2016 .

[25]  Jiagang Wu,et al.  Composition dependence of phase structure and electrical properties in lead-free (1-x)(K0.42Na0.585)(Nb1−ySby)O3-xBi0.5K0.5ZrO3 piezoceramics , 2015 .

[26]  Jianguo Zhu,et al.  Composition-Driven Phase Boundary and Piezoelectricity in Potassium-Sodium Niobate-Based Ceramics. , 2015, ACS applied materials & interfaces.

[27]  X. Lou,et al.  New (1 − x)K0.45Na0.55Nb0.96Sb0.04O3-xBi0.5Na0.5HfO3 lead-free ceramics: Phase boundary and their electrical properties , 2015 .

[28]  Jiagang Wu High piezoelectricity in low-temperature sintering potassium–sodium niobate-based lead-free ceramics , 2014 .

[29]  Jianguo Zhu,et al.  High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3–Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity , 2014 .

[30]  Jianguo Zhu,et al.  Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. , 2014, Journal of the American Chemical Society.

[31]  C. Randall,et al.  Possibility of Cofiring a Nickel Inner Electrode in a (Na0.5K0.5)NbO3–LiF Piezoelectric Actuator , 2013 .

[32]  H. Ishii,et al.  Piezoelectric Properties of Sn-Doped (K,Na)NbO3 Ceramics , 2013 .

[33]  Doru C. Lupascu,et al.  Temperature‐Insensitive (K,Na)NbO3‐Based Lead‐Free Piezoactuator Ceramics , 2013 .

[34]  Genshui Wang,et al.  Recent Progress on Defect Dipoles Characteristics in Piezoelectric Materials: Recent Progress on Defect Dipoles Characteristics in Piezoelectric Materials , 2013 .

[35]  Jianguo Zhu,et al.  Effect of the Addition of CaZrO3 and LiNbO3 on the Phase Transitions and Piezoelectric Properties of K0.5Na0.5NbO3 Lead‐Free Ceramics , 2011 .

[36]  R. Zuo,et al.  Antimony Tuned Rhombohedral-Orthorhombic Phase Transition and Enhanced Piezoelectric Properties in Sodium Potassium Niobate , 2010 .

[37]  J. L. Zhang,et al.  Extremely temperature-stable piezoelectric properties of orthorhombic phase in (K,Na)NbO3-based ceramics , 2010 .

[38]  S. Kawada,et al.  (K,Na)NbO3-Based Multilayer Piezoelectric Ceramics with Nickel Inner Electrodes , 2009 .

[39]  Prasanta Kumar Panda,et al.  Review: environmental friendly lead-free piezoelectric materials , 2009, Journal of Materials Science.

[40]  Li‐Zhu Wu,et al.  Influence of compositional ratio K/Na on physical properties in (KxNa1−x)NbO3 ceramics , 2008 .

[41]  Shujun Zhang,et al.  Mitigation of thermal and fatigue behavior in K(0.5)Na(0.5)NbO(3)-based lead free piezoceramics. , 2008, Applied physics letters.

[42]  N. Setter,et al.  A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy , 2007 .

[43]  Jaesung Song,et al.  Effect of Na2O additions on the sinterability and piezoelectric properties of lead-free 95(Na0.5K0.5)NbO3–5LiTaO3 ceramics , 2007 .

[44]  Yiping Guo,et al.  Raman Scattering Study of Piezoelectric (Na0.5K0.5)NbO3-LiNbO3 Ceramics , 2005 .

[45]  Chen Limin,et al.  High Temperature Properties and Microstructures of Si 3 N 4 with AZ-Type Non-Toxic, Non-Oxide Additives , 1992 .