Effects of technical progress on performance and application of supercritical carbon dioxide power cycle: A review

[1]  R. E. Nece,et al.  Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks , 1960 .

[2]  G. Angelino Carbon Dioxide Condensation Cycles For Power Production , 1968 .

[3]  R. S. Benson,et al.  A review of methods for assessing loss coefficients in radial gas turbines , 1970 .

[4]  Christos A. Frangopoulos,et al.  Thermo-economic functional analysis and optimization , 1987 .

[5]  V. Martynets,et al.  Study of the phase equilibrium of {(1-x)CO2+xKr} for x < 0.032 near the critical point of CO2 , 1991 .

[6]  Miguel A. Lozano,et al.  Theory of the exergetic cost , 1993 .

[7]  N. C. Baines,et al.  The aerodynamic loading of radial and mixed-flow turbines , 1994 .

[8]  M. J. Moran,et al.  Thermal design and optimization , 1995 .

[9]  O. B. Tsvetkov,et al.  Experimental study and correlation of the thermal conductivity of 1,1,1,2-tetrafluoroethane (R134a) in the rarefied gas state , 1995 .

[10]  Satha Aphornratana,et al.  A theoretical and experimental study of a small-scale steam jet refrigerator , 1995 .

[11]  Ho-Young Kwak,et al.  Exergoeconomic analysis of thermal systems , 1998 .

[12]  Antonio Valero,et al.  Structural theory as standard for thermoeconomics , 1999 .

[13]  Tony Clifford,et al.  Fundamentals of Supercritical Fluids , 1999 .

[14]  V. Martynets,et al.  Critical line of (xenon + carbon dioxide) , 1999 .

[15]  Neil E. Todreas,et al.  A Supercritical CO2 Gas Turbine Power Cycle for Next-Generation Nuclear Reactors , 2002 .

[16]  N. Baines Axial and Radial Turbines , 2003 .

[17]  Vaclav Dostal,et al.  A supercritical carbon dioxide cycle for next generation nuclear reactors , 2004 .

[18]  Hiroshi Yamaguchi,et al.  Experimental Performance Analysis of Supercritical CO2 Thermodynamic Cycle Powered by Solar Energy , 2006 .

[19]  Konstantin Nikitin,et al.  New printed circuit heat exchanger with S-shaped fins for hot water supplier , 2006 .

[20]  R. Viswanathan,et al.  Materials for ultra-supercritical coal-fired power plant boilers , 2006 .

[21]  M. Driscoll,et al.  The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles , 2006 .

[22]  Pradeep K. Sahoo,et al.  Thermoeconomic evaluation and optimization of an aqua-ammonia vapour-absorption refrigeration system , 2006 .

[23]  Andrea Lazzaretto,et al.  SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems , 2006 .

[24]  Y. Kato,et al.  Printed circuit heat exchanger thermal–hydraulic performance in supercritical CO2 experimental loop , 2006 .

[25]  Vaclav Dostal,et al.  High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors , 2006 .

[26]  Yasuyoshi Kato,et al.  High performance printed circuit heat exchanger , 2007 .

[27]  S. Wright Supercritical Brayton Cycle Nuclear Power System Concepts , 2007 .

[28]  Nathan Carstens Control strategies for supercritical carbon dioxide power conversion systems , 2007 .

[29]  Y. Kato,et al.  Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles , 2007 .

[30]  G. Tsatsaronis Definitions and nomenclature in exergy analysis and exergoeconomics , 2007 .

[31]  Mohamed S. El-Genk,et al.  Noble gas binary mixtures for gas-cooled reactor power plants , 2008 .

[32]  Mohamed S. El-Genk,et al.  On the use of noble gases and binary mixtures as reactor coolants and CBC working fluids , 2008 .

[33]  James J. Sienicki,et al.  Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor , 2008 .

[34]  Jae Eun Cha,et al.  Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model ☆ , 2008 .

[35]  Pradeep K. Sahoo,et al.  Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming , 2008 .

[36]  Ibrahim Dincer,et al.  PERFORMANCE ASSESSMENT OF COGENERATION PLANTS , 2009 .

[37]  Ricardo Chacartegui,et al.  A New Concept for High Temperature Fuel Cell Hybrid Systems Using Supercritical Carbon Dioxide , 2009 .

[38]  A. Moisseytsev,et al.  Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. , 2009 .

[39]  Jahar Sarkar,et al.  Optimization of recompression S-CO2 power cycle with reheating , 2009 .

[40]  Perry Y. Li,et al.  Liquid piston gas compression , 2009 .

[41]  Richard N. Christensen,et al.  Investigation of High-Temperature Printed Circuit Heat Exchangers for Very High Temperature Reactors , 2009 .

[42]  Jahar Sarkar,et al.  Second law analysis of supercritical CO2 recompression Brayton cycle , 2009 .

[43]  Konstantin Nikitin,et al.  Advanced Microchannel Heat Exchanger with S-shaped Fins , 2009 .

[44]  Arif Hepbasli,et al.  Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas–diesel engine: Part I – Methodology , 2010 .

[45]  Said Farahat,et al.  A new approach for optimization of thermal power plant based on the exergoeconomic analysis and structural optimization method: Application to the CGAM problem , 2010 .

[46]  Mike Patterson,et al.  Design Option of Heat Exchanger for the Next Generation Nuclear Plant , 2010 .

[47]  Renique J. Murray,et al.  Thermo-economic modeling of a solid oxide fuel cell/gas turbine power plant with semi-direct coupling and anode recycling , 2010 .

[48]  Sangkwon Jeong,et al.  Hydraulic performance of a microchannel PCHE , 2010 .

[49]  Mahmood Yaghoubi,et al.  Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm , 2011 .

[50]  Mahmood Yaghoubi,et al.  Multi‐objective exergoeconomic optimization of an Integrated Solar Combined Cycle System using evolutionary algorithms , 2011 .

[51]  Y. Jeong,et al.  Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR , 2011 .

[52]  Ricardo Chacartegui,et al.  Performance analysis of a MCFC & supercritical carbon dioxide hybrid cycle under part load operation , 2011 .

[53]  M. Utamura,et al.  Demonstration Test Plant of Closed Cycle Gas Turbine with Supercritical CO 2 as Working Fluid , 2011 .

[54]  J. Eoh,et al.  Sodium-CO2 Interaction in a Supercritical CO2 Power Conversion System Coupled with a Sodium Fast Reactor , 2011 .

[55]  Ricardo Chacartegui,et al.  A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical ca , 2011 .

[56]  Semra Özkan,et al.  Exergoeconomic analysis of a cogeneration plant in an iron and steel factory , 2012 .

[57]  Jeong Ik Lee,et al.  Design Methodology of Supercritical CO2 Brayton Cycle Turbomachineries , 2012 .

[58]  Robert Fuller,et al.  Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle , 2012 .

[59]  Peter A. Jacobs,et al.  Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach , 2012 .

[60]  Motoaki Utamura,et al.  Aerodynamic Characteristics of a Centrifugal Compressor Working in Supercritical Carbon Dioxide , 2012 .

[61]  Kwang-Yong Kim,et al.  Optimization of zigzag flow channels of a printed circuit heat exchanger for nuclear power plant application , 2012 .

[62]  Hiroshi Yamaguchi,et al.  Optimal arrangement of the solar collectors of a supercritical CO2-based solar Rankine cycle system , 2013 .

[63]  Yann Le Moullec,et al.  Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle , 2013 .

[64]  Harald Taxt Walnum,et al.  Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions , 2013 .

[65]  Pardeep Garg,et al.  Supercritical carbon dioxide Brayton cycle for concentrated solar power , 2013 .

[66]  Y. Jeong,et al.  Performance of supercritical Brayton cycle using CO2-based binary mixture at varying critical points for SFR applications , 2013 .

[67]  Mortaza Yari,et al.  An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle , 2013 .

[68]  Peter A. Jacobs,et al.  Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant , 2013 .

[69]  Ricardo Chacartegui,et al.  Aerodynamic analysis of conical diffusers operating with air and supercritical carbon dioxide , 2013 .

[70]  Kwang-Yong Kim,et al.  Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations , 2013 .

[71]  Yann Le Moullec Conception of a Pulverized Coal Fired Power Plant with Carbon Capture around a Supercritical Carbon Dioxide Brayton Cycle , 2013 .

[72]  C. Turchi,et al.  A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications , 2013 .

[73]  A. Moisseytsev,et al.  A numerical investigation of the sCO2 recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature , 2013 .

[74]  Marc A. Rosen,et al.  A comparative exergoeconomic analysis of two biomass and co-firing combined power plants. , 2013 .

[75]  C. Turchi,et al.  Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems , 2013 .

[76]  Yasushi Muto,et al.  Cycle Thermal Efficiency of Supercritical CO2 Gas Turbine Dependent on Recuperator Performance , 2013 .

[77]  D. Yogi Goswami,et al.  Analysis of Advanced Supercritical Carbon Dioxide Power Cycles With a Bottoming Cycle for Concentrating Solar Power Applications , 2013 .

[78]  Kwang‐Yong Kim,et al.  Thermal Performance of a Double-Faced Printed Circuit Heat Exchanger with Thin Plates , 2014 .

[79]  Xinguo Li,et al.  A supercritical or transcritical Rankine cycle with ejector using low-grade heat , 2014 .

[80]  Jun Zhao,et al.  Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system , 2014 .

[81]  Marc A. Rosen,et al.  Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles , 2014 .

[82]  Ho-Sang Ra,et al.  Development of the turbomachinery for the supercritical carbon dioxide power cycle , 2014 .

[83]  Brian D. Iverson,et al.  Review of high-temperature central receiver designs for concentrating solar power , 2014 .

[84]  Kwang-Yong Kim,et al.  Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling , 2014 .

[85]  Jeong-Ik Lee,et al.  Supercritical Carbon Dioxide turbomachinery design for water-cooled Small Modular Reactor application , 2014 .

[86]  John J. Dyreby,et al.  Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With Recompression , 2014 .

[87]  Kwang-Yong Kim,et al.  A Parametric Study of the Thermal-Hydraulic Performance of a Zigzag Printed Circuit Heat Exchanger , 2014 .

[88]  Youho Lee,et al.  Structural assessment of intermediate printed circuit heat exchanger for sodium-cooled fast reactor with supercritical CO2 cycle , 2014 .

[89]  Robbie McNaughton,et al.  Effect of Pressure Drop and Reheating on Thermal and Exergetic Performance of Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Central Receiver , 2015 .

[90]  Jahar Sarkar,et al.  Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion , 2015 .

[91]  Ricardo Vasquez Padilla,et al.  Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers , 2015 .

[92]  Angelo Moreno,et al.  Numerical investigation of a MCFC (Molten Carbonate Fuel Cell) system hybridized with a supercritical CO2 Brayton cycle and compared with a bottoming Organic Rankine Cycle , 2015 .

[93]  Zhongyi Wang,et al.  CFD study on the supercritical carbon dioxide cooled pebble bed reactor , 2015 .

[94]  R. Khoshbakhti Saray,et al.  Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle , 2015 .

[95]  Seong Gu Kim,et al.  Design consideration of supercritical CO2 power cycle integral experiment loop , 2015 .

[96]  Atul Srivastava,et al.  Thermal-hydraulic characteristics and performance of 3D wavy channel based printed circuit heat exchanger , 2015 .

[97]  Fahad A. Al-Sulaiman,et al.  Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower , 2015 .

[98]  Seungjoon Baik,et al.  Review of supercritical CO2 power cycle technology and current status of research and development , 2015 .

[99]  Z. Spakovszky,et al.  An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors , 2015 .

[100]  M. Mehrpooya,et al.  Energy and exergy analysis and optimal design of the hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process , 2015 .

[101]  Z. Spakovszky,et al.  An Investigation of Condensation Effects in Supercritical Carbon Dioxide Compressors , 2015 .

[102]  Eric M. Clementoni,et al.  Off-Nominal Component Performance in a Supercritical Carbon Dioxide Brayton Cycle , 2015 .

[103]  Olivier Boutin,et al.  Mapping of the thermodynamic performance of the supercritical CO2 cycle and optimisation for a small modular reactor and a sodium-cooled fast reactor , 2015 .

[104]  L. Pan,et al.  Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor , 2015 .

[105]  Tae Ho Kim,et al.  Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle , 2015 .

[106]  Sudipta De,et al.  Thermodynamic modelling of a recompression CO2 power cycle for low temperature waste heat recovery , 2016 .

[107]  Jeong Ik Lee,et al.  Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle , 2016 .

[108]  Clifford K. Ho,et al.  Technoeconomic Analysis of Alternative Solarized s-CO2 Brayton Cycle Configurations , 2016 .

[109]  Robbie McNaughton,et al.  Thermodynamic feasibility of alternative supercritical CO2 Brayton cycles integrated with an ejector , 2016 .

[110]  M. Rosen,et al.  Introducing and analysis of a hybrid molten carbonate fuel cell-supercritical carbon dioxide Brayton cycle system , 2016 .

[111]  V. Utgikar,et al.  Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger , 2016 .

[112]  Alexandre K. da Silva,et al.  A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid , 2016 .

[113]  V. Zare,et al.  Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants , 2016 .

[114]  Jiangfeng Guo Design analysis of supercritical carbon dioxide recuperator , 2016 .

[115]  Bo Li,et al.  Experimental investigation on the CO2 transcritical power cycle , 2016 .

[116]  Clifford K. Ho,et al.  Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications , 2016 .

[117]  Andrea Cioncolini,et al.  On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant , 2016 .

[118]  J. I. Linares,et al.  Supercritical CO2 Brayton power cycles for DEMO (demonstration power plant) fusion reactor based on dual coolant lithium lead blanket , 2016 .

[119]  Atul Sharma,et al.  Thermal-hydraulic characteristics and performance of 3D straight channel based printed circuit heat exchanger , 2016 .

[120]  M. A. Reyes-Belmonte,et al.  Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant , 2016 .

[121]  Omar Abdelaziz,et al.  Thermal analysis of near-isothermal compressed gas energy storage system , 2016 .

[122]  Jeong-Ik Lee,et al.  CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application , 2016 .

[123]  S.M.S. Mahmoudi,et al.  Thermoeconomic analysis and multi objective optimization of a molten carbonate fuel cell – Supercritical carbon dioxide – Organic Rankin cycle integrated power system using liquefied natural gas as heat sink , 2016 .

[124]  Yiping Dai,et al.  Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study , 2016 .

[125]  Jun Li,et al.  System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery , 2016 .

[126]  S. Jeon,et al.  Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle , 2016 .

[127]  Yann Le Moullec,et al.  Supercritical CO2 Brayton cycles for coal-fired power plants , 2016 .

[128]  Ming Liu,et al.  Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle , 2017 .

[129]  Seungjoon Baik,et al.  Study on CO2 – water printed circuit heat exchanger performance operating under various CO₂ phases for S-CO₂ power cycle application , 2017 .

[130]  Ingo Jahn,et al.  Supercritical CO2 Radial Turbine Design Performance as a Function of Turbine Size Parameters , 2017 .

[131]  Jun Li,et al.  Energy, exergy and exergoeconomic analyses of a combined supercritical CO2 recompression Brayton/absorption refrigeration cycle , 2017 .

[132]  X. Huai,et al.  Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil , 2017 .

[133]  Seungjoon Baik,et al.  Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor , 2017 .

[134]  Yong‐Le Nian,et al.  Global parameter optimization and criterion formula of supercritical carbon dioxide Brayton cycle with recompression , 2017 .

[135]  Sung Won Bae,et al.  Transient analysis and validation with experimental data of supercritical CO2 integral experiment loop by using MARS , 2017 .

[136]  Armin Hafner,et al.  HEM and HRM accuracy comparison for the simulation of CO2 expansion in two-phase ejectors for supermarket refrigeration systems , 2017 .

[137]  David Sánchez,et al.  Supercritical carbon dioxide cycles for power generation: A review , 2017 .

[138]  Ali Abbas,et al.  Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle , 2017 .

[139]  Kun Wang,et al.  The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries , 2017 .

[140]  Zhenping Feng,et al.  Study on performances of supercritical CO2 recompression Brayton cycles with multi-objective optimization , 2017 .

[141]  Yi Yang,et al.  Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application , 2017 .

[142]  Qiuwan Wang,et al.  Spray Etching Rate Development of Stainless Steel in the Etchant for Printed Circuit Heat Exchanger Channels , 2017 .

[143]  Zhang Yifan,et al.  Coupled simulation of the combustion and fluid heating of a 300 MW supercritical CO2 boiler , 2017 .

[144]  Ya-Ling He,et al.  Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts , 2017 .

[145]  Emin Açıkkalp,et al.  Ecologic and sustainable objective thermodynamic evaluation of molten carbonate fuel cell–supercritical CO2 Brayton cycle hybrid system , 2017 .

[146]  Shengya Hou,et al.  Performance analysis of the combined supercritical CO2 recompression and regenerative cycle used in waste heat recovery of marine gas turbine , 2017 .

[147]  Ting Ma,et al.  Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins , 2017 .

[148]  Fahad A. Al-Sulaiman,et al.  Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations , 2017 .

[149]  Kun Wang,et al.  Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling , 2017 .

[150]  Hang Li,et al.  Exergoeconomic Analysis and Optimization of a Supercritical CO2 Cycle Coupled with a Kalina Cycle , 2017 .

[151]  S. C. Kaushik,et al.  Thermodynamic analysis and optimization of a supercritical CO2 regenerative recompression Brayton cycle coupled with a marine gas turbine for shipboard waste heat recovery , 2017 .

[152]  Liu Yu,et al.  The design and analysis of supercritical carbon dioxide centrifugal turbine , 2017 .

[153]  Jin Taek Chung,et al.  Numerical studies on thermal hydraulic performance of zigzag-type printed circuit heat exchanger with inserted straight channels , 2017 .

[154]  Fathollah Pourfayaz,et al.  Thermodynamic evaluation and multi-objective optimization of molten carbonate fuel cell-supercritical CO2 Brayton cycle hybrid system , 2017 .

[155]  Man-Hoe Kim,et al.  Thermal and hydraulic performance of SCO2 PCHE with different fin configurations , 2017 .

[156]  Savvas A. Tassou,et al.  Design of radial turbomachinery for supercritical CO 2 systems using theoretical and numerical CFD methodologies , 2017 .

[157]  Eui Soo Yoon,et al.  Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine , 2017 .

[158]  Ali Abbas,et al.  A comparative study of solar heliostat assisted supercritical CO2 recompression Brayton cycles: Dynamic modelling and control strategies , 2017 .

[159]  Arash Nemati,et al.  Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2) , 2017 .

[160]  Hongguang Jin,et al.  Thermodynamic Analysis of the Cascaded Supercritical CO2 Cycle Integrated with Solar and Biomass Energy , 2017 .

[161]  Anestis I. Kalfas,et al.  Recuperators investigation for high temperature supercritical carbon dioxide power generation cycles , 2017 .

[162]  Yongping Yang,et al.  A supercritical CO2 Brayton cycle with a bleeding anabranch used in coal-fired power plants , 2018 .

[163]  Tae Ho Kim,et al.  Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors , 2018, Energy.

[164]  Alexandre K. da Silva,et al.  Transient analysis and optimization of a recuperative sCO2 Brayton cycle assisted by heat and mass storage systems , 2018 .

[165]  Jinliang Xu,et al.  Connected-top-bottom-cycle to cascade utilize flue gas heat for supercritical carbon dioxide coal fired power plant , 2018, Energy Conversion and Management.

[166]  S. C. Kaushik,et al.  Thermodynamic analysis of a supercritical/transcritical CO2 based waste heat recovery cycle for shipboard power and cooling applications , 2018 .

[167]  Yu Yang,et al.  300 MW boiler design study for coal-fired supercritical CO2 Brayton cycle , 2018 .

[168]  Sung Ho Park,et al.  Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle , 2018 .

[169]  Jian Song,et al.  Performance improvement of a preheating supercritical CO2 (S-CO2) cycle based system for engine waste heat recovery , 2018 .

[170]  Robbie McNaughton,et al.  Multi-objective thermodynamic optimisation of supercritical CO2 Brayton cycles integrated with solar central receivers , 2018 .

[171]  Ming Liu,et al.  Performance investigation of a novel closed Brayton cycle using supercritical CO2-based mixture as working fluid integrated with a LiBr absorption chiller , 2018, Applied Thermal Engineering.

[172]  Jian Song,et al.  Aerodynamic design and numerical analysis of a radial inflow turbine for the supercritical carbon dioxide Brayton cycle , 2018 .

[173]  Yueming Wang,et al.  Improved design of supercritical CO2 Brayton cycle for coal-fired power plant , 2018, Energy.

[174]  Peiwen Li,et al.  A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants , 2018 .

[175]  Jacek Smolka,et al.  A gas ejector for CO2 supercritical cycles , 2018, Energy.

[176]  A. Klimenko,et al.  Design and comparison of direct and indirect cooling system for 25 MW solar power plant operated with supercritical CO2 cycle , 2018, Energy Conversion and Management.

[177]  F. Al-Sulaiman,et al.  Energy and Exergy Analyses of Recompression Brayton Cycles Integrated with a Solar Power Tower through a Two-Tank Thermal Storage System , 2018 .

[178]  Jinguang Yang,et al.  Aerodynamic design optimization of radial-inflow turbine in supercritical CO2 cycles using a one-dimensional model , 2018, Energy Conversion and Management.

[179]  Yue Cao,et al.  Thermoeconomic analysis of a gas turbine and cascaded CO2 combined cycle using thermal oil as an intermediate heat-transfer fluid , 2018, Energy.

[180]  A. Sharma,et al.  Effects of wavy channel configurations on thermal-hydraulic characteristics of Printed Circuit Heat Exchanger (PCHE) , 2018 .

[181]  S. L. Abreu,et al.  Time-dependent behavior of a recompression cycle with direct CO2 heating through a parabolic collector array , 2018 .

[182]  Jiangfeng Guo,et al.  Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2 , 2018, International Journal of Heat and Mass Transfer.

[183]  Minh Tri Luu,et al.  Advanced control strategies for dynamic operation of a solar-assisted recompression supercritical CO2 Brayton power cycle , 2018 .

[184]  A. Coşkun,et al.  Thermoeconomic analysis of a CO2 compression system using waste heat into the regenerative organic Rankine cycle , 2018, Energy Conversion and Management.

[185]  Jun Li,et al.  Exergoeconomic analysis and optimization of single-pressure single-stage and multi-stage CO2 transcritical power cycles for engine waste heat recovery: A comparative study , 2018 .

[186]  Fengyuan Zhang,et al.  Optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 recompression cycle, a steam power cycle and an organic Rankine cycle , 2018, Energy Conversion and Management.

[187]  W. Cheng,et al.  An adaptive flow path regenerator used in supercritical carbon dioxide Brayton cycle , 2018, Applied Thermal Engineering.

[188]  V. Utgikar,et al.  Dynamic behavior of a high-temperature printed circuit heat exchanger: Numerical modeling and experimental investigation , 2018 .

[189]  Yen Chean Soo Too,et al.  Impact of ambient temperature on supercritical CO2 recompression Brayton cycle in arid locations: Finding the optimal design conditions , 2018, Energy.

[190]  W. Su,et al.  Preliminary conceptual exploration about performance improvement on supercritical CO2 power system via integrating with different absorption power generation systems , 2018, Energy Conversion and Management.

[191]  Jeong Ik Lee,et al.  Application of adjoint sensitivity analysis method to supercritical CO2 power cycle optimization , 2018 .

[192]  Min-Soo Kim,et al.  Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators , 2018 .

[193]  Jun Li,et al.  Condensation and expansion characteristics of water steam and carbon dioxide in a Laval nozzle , 2019, Energy.

[194]  Seong Gu Kim,et al.  Condensation heat transfer and multi-phase pressure drop of CO2 near the critical point in a printed circuit heat exchanger , 2019, International Journal of Heat and Mass Transfer.

[195]  E. Jiaqiang,et al.  A novel combined cooling-heating and power (CCHP) system integrated organic Rankine cycle for waste heat recovery of bottom slag in coal-fired plants , 2019, Energy Conversion and Management.

[196]  Qiuwan Wang,et al.  Study on chemical spray etching of stainless steel for printed circuit heat exchanger channels , 2019, Nuclear Engineering and Design.

[197]  Yu Yang,et al.  Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop , 2019, Energy.

[198]  Nouri J. Samsatli,et al.  Parametric analysis and optimization for exergoeconomic performance of a combined system based on solid oxide fuel cell-gas turbine and supercritical carbon dioxide Brayton cycle , 2019, Energy Conversion and Management.

[199]  Kexiang Wei,et al.  Effects analysis on optimal microwave energy consumption in the heating process of composite regeneration for the diesel particulate filter , 2019, Applied Energy.

[200]  Kasra Mohammadi,et al.  A review of unconventional bottoming cycles for waste heat recovery: Part II – Applications , 2019, Energy Conversion and Management.