The ultrafast response of a scanning tunneling microscope

The development of the ultrafast scanning tunneling microscope is reviewed. It is shown that the response of the tunneling gap of a scanning tunneling microscope to excitation by a subpicosecond electrical pulse has a capacitive component, the origin of which is quantum mechanical

[1]  E. Betzig,et al.  Near-field spectroscopy of single molecules at room temperature , 1994, Nature.

[2]  J. Gimzewski,et al.  Photon emission with the scanning tunneling microscope , 1988 .

[3]  H. Wolf,et al.  Scanning surface harmonic microscopy of self‐assembled monolayers on gold , 1993 .

[4]  David G. Cahill,et al.  Ultrafast time resolution in scanned probe microscopies , 1990 .

[5]  P. H. Cutler,et al.  Use of a scanning tunneling microscope to rectify optical frequencies and measure an operational tunneling time , 1988 .

[6]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[7]  D. Auston,et al.  Impulse response of photoconductors in transmission lines , 1983 .

[8]  David M. Bloom,et al.  Picosecond electrical sampling using a scanning force microscope , 1992 .

[9]  J. Tucker,et al.  Quantum limited detection in tunnel junction mixers , 1979 .

[10]  Calvin F. Quate,et al.  Microfabrication of cantilever styli for the atomic force microscope , 1990 .

[11]  H. Walther,et al.  Laser‐frequency mixing in the junction of a scanning tunneling microscope , 1987 .

[12]  Suzuki,et al.  Generation of microwave radiation in the tunneling junction of a scanning tunneling microscope. , 1990, Physical review. B, Condensed matter.

[13]  Markus Buttiker,et al.  Capacitance, admittance, and rectification properties of small conductors , 1993 .

[14]  J. P. Gordon,et al.  Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films , 1963 .

[15]  K. H. Besocke,et al.  Coarse tip distance adjustment and positioner for a scanning tunneling microscope , 1989 .

[16]  Guann-Pyng Li,et al.  Generation of subpicosecond electrical pulses on coplanar transmission lines , 1986 .

[17]  D. Weinmann,et al.  Frequency-Dependent Conductance of Tunnel Junctions , 1993 .

[18]  Shimon Weiss,et al.  Ultrafast scanning probe microscopy , 1993 .

[19]  John G. Simmons,et al.  Generalized Thermal J‐V Characteristic for the Electric Tunnel Effect , 1964 .

[20]  Lloyd,et al.  Observation of nondissipative quasiparticle tunnel currents in superconducting tunnel junctions. , 1990, Physical review letters.

[21]  Marc J. Feldman,et al.  Quantum detection at millimeter wavelengths , 1985 .

[22]  E. Teague,et al.  Room Temperature Gold-Vacuum-Gold Tunneling Experiments. , 1978, Journal of research of the National Bureau of Standards.

[23]  G. Binnig,et al.  Single-tube three-dimensional scanner for scanning tunneling microscopy , 1986 .

[24]  Cho,et al.  Subpicosecond time-resolved coherent-phonon oscillations in GaAs. , 1990, Physical review letters.

[25]  M. R. Freeman,et al.  Picosecond Resolution in Scanning Tunneling Microscopy , 1993, Science.

[26]  C. J. Chen,et al.  Introduction to Scanning Tunneling Microscopy , 1993 .

[27]  M. R. Freeman,et al.  Time‐resolved scanning tunneling microscopy through tunnel distance modulation , 1993 .

[28]  K. Takeuchi,et al.  High‐speed optical sampling measurement of electrical wave form using a scanning tunneling microscope , 1993 .