Importance of depth and temperature variability as drivers of coral symbiont composition despite a mass bleaching event

[1]  R. Gates,et al.  Community composition of coral-associated Symbiodiniaceae differs across fine-scale environmental gradients in Kāne‘ohe Bay , 2022, Royal Society Open Science.

[2]  P. Frade,et al.  Reef location has a greater impact than coral bleaching severity on the microbiome of Pocillopora acuta , 2021, Coral Reefs.

[3]  S. Monismith,et al.  Genetic patterns in Montipora capitata across an environmental mosaic in Kāne'ohe Bay, O'ahu, Hawai'i , 2021, bioRxiv.

[4]  J. Eirín-López,et al.  Coral environmental memory: causes, mechanisms, and consequences for future reefs. , 2021, Trends in ecology & evolution.

[5]  R. Gates,et al.  Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions , 2021, Proceedings of the National Academy of Sciences.

[6]  R. Gates,et al.  Shifting baselines: Physiological legacies contribute to the response of reef corals to frequent heatwaves , 2021 .

[7]  D. Lirman,et al.  Genotype by environment interactions in coral bleaching , 2021, Proceedings of the Royal Society B.

[8]  R. Gates,et al.  Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves , 2020, Nature Communications.

[9]  James L. Hench,et al.  Increasing comparability among coral bleaching experiments , 2020, Ecological applications : a publication of the Ecological Society of America.

[10]  A. Baker,et al.  Host genotype and stable differences in algal symbiont communities explain patterns of thermal stress response of Montipora capitata following thermal pre-exposure and across multiple bleaching events , 2020, Coral Reefs.

[11]  Chelsie W. W. Counsell,et al.  The legacy of stress: Coral bleaching impacts reproduction years later , 2020 .

[12]  R. Gates,et al.  Coral community resilience to successive years of bleaching in Kāne‘ohe Bay, Hawai‘i , 2020, Coral Reefs.

[13]  A. Grottoli,et al.  Thirty years of coral heat-stress experiments: a review of methods , 2020, Coral Reefs.

[14]  R. Gates,et al.  Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species , 2019, bioRxiv.

[15]  C. Drury Resilience in reef‐building corals: The ecological and evolutionary importance of the host response to thermal stress , 2019, Molecular ecology.

[16]  T. Miyajima,et al.  Heat accumulation on coral reefs mitigated by internal waves , 2019, Nature Geoscience.

[17]  S. Palumbi,et al.  Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef‐building corals , 2019, Molecular ecology.

[18]  M. Miller,et al.  Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata , 2019, Coral Reefs.

[19]  R. Toonen,et al.  Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans , 2019, Proceedings of the Royal Society B.

[20]  Hugh J. M. Warrington,et al.  SymPortal: A novel analytical framework and platform for coral algal symbiont next‐generation sequencing ITS2 profiling , 2019, Molecular ecology resources.

[21]  D. Burkepile,et al.  A global analysis of coral bleaching over the past two decades , 2019, Nature Communications.

[22]  R. Gates,et al.  Effects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbance , 2019, Scientific Reports.

[23]  Ryan J. Lowe,et al.  Physical mechanisms influencing localized patterns of temperature variability and coral bleaching within a system of reef atolls , 2019, Coral Reefs.

[24]  T. Hughes,et al.  Ecological memory modifies the cumulative impact of recurrent climate extremes , 2018, Nature Climate Change.

[25]  R. Gates,et al.  Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery , 2018, bioRxiv.

[26]  S. Coles,et al.  Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures , 2018, PeerJ.

[27]  J. Reimer,et al.  Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts , 2018, Current Biology.

[28]  G. Edgar,et al.  Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching , 2018, Nature.

[29]  James L. Hench,et al.  High frequency temperature variability reduces the risk of coral bleaching , 2018, Nature Communications.

[30]  R. Cunning,et al.  Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals , 2018, Coral Reefs.

[31]  R. Gates,et al.  Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne‘ohe Bay, O‘ahu, Hawai‘i , 2018, Coral Reefs.

[32]  B. Willis,et al.  Transgenerational inheritance of shuffled symbiont communities in the coral Montipora digitata , 2018, Scientific Reports.

[33]  Zachary J Gold,et al.  Long-term growth rates and effects of bleaching in Acropora hyacinthus , 2018, Coral Reefs.

[34]  Ross Jones,et al.  Coral morphology and sedimentation. , 2017, Marine pollution bulletin.

[35]  P. Jokiel,et al.  Impact of Three Bleaching Events on the Reef Resiliency of Kāne‘ohe Bay, Hawai‘i , 2017, Front. Mar. Sci..

[36]  M. Hoogenboom,et al.  Environmental Drivers of Variation in Bleaching Severity of Acropora Species during an Extreme Thermal Anomaly , 2017, Front. Mar. Sci..

[37]  P. Marshall,et al.  Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef? , 2017, Proceedings of the Royal Society B: Biological Sciences.

[38]  Elvira S. Poloczanska,et al.  Coral Reef Ecosystems under Climate Change and Ocean Acidification , 2017, Front. Mar. Sci..

[39]  J. Burt,et al.  Symbiont community stability through severe coral bleaching in a thermally extreme lagoon , 2017, Scientific Reports.

[40]  Will F. Figueira,et al.  Global warming and recurrent mass bleaching of corals , 2017, Nature.

[41]  J. Burt,et al.  Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula , 2017, Journal of biogeography.

[42]  R. Gates,et al.  Patterns of bleaching and recovery of Montipora capitata in Kāne`ohe Bay, Hawai`i, USA , 2016 .

[43]  R. Berkelmans,et al.  Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral , 2016, Royal Society Open Science.

[44]  P. Jokiel,et al.  Influence of solar irradiance on underwater temperature recorded by temperature loggers on coral reefs , 2016 .

[45]  Scott F. Heron,et al.  Climate change disables coral bleaching protection on the Great Barrier Reef , 2016, Science.

[46]  R. Woesik,et al.  Climate‐change refugia: shading reef corals by turbidity , 2016, Global change biology.

[47]  D. McDougald,et al.  Coral community response to bleaching on a highly disturbed reef , 2016, Scientific Reports.

[48]  M. Stat,et al.  Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment , 2015, Scientific Reports.

[49]  R. Cunning,et al.  Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change , 2015, Proceedings of the Royal Society B: Biological Sciences.

[50]  P. Cox,et al.  Coral bleaching under unconventional scenarios of climate warming and ocean acidification , 2015 .

[51]  R. Toonen,et al.  Distributed under Creative Commons Cc-by 4.0 the Unnatural History of K¯ Ane'ohe Bay: Coral Reef Resilience in the Face of Centuries of Anthropogenic Impacts , 2022 .

[52]  Jarrett J. Barber,et al.  Quantifying ecological memory in plant and ecosystem processes. , 2015, Ecology letters.

[53]  R. Cunning,et al.  Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals , 2015, Global change biology.

[54]  Yohei Matsui,et al.  The cumulative impact of annual coral bleaching can turn some coral species winners into losers , 2014, Global change biology.

[55]  S. Palumbi,et al.  Mechanisms of reef coral resistance to future climate change , 2014, Science.

[56]  J. Lough,et al.  Surviving Coral Bleaching Events: Porites Growth Anomalies on the Great Barrier Reef , 2014, PloS one.

[57]  S. Donner,et al.  Incorporating adaptive responses into future projections of coral bleaching , 2014, Global change biology.

[58]  M. Pratchett,et al.  Changes in Bleaching Susceptibility among Corals Subject to Ocean Warming and Recurrent Bleaching in Moorea, French Polynesia , 2013, PloS one.

[59]  Erik C. Franklin,et al.  Predictive modeling of coral distribution and abundance in the Hawaiian Islands , 2013 .

[60]  H. Yamano,et al.  Species-Specific Responses of Corals to Bleaching Events on Anthropogenically Turbid Reefs on Okinawa Island, Japan, over a 15-year Period (1995–2009) , 2013, PloS one.

[61]  T. Ridgway,et al.  Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef , 2013, Coral Reefs.

[62]  Edward G. Smith,et al.  Nutrient enrichment can increase the susceptibility of reef corals to bleaching , 2013 .

[63]  T. Oliver,et al.  Genomic basis for coral resilience to climate change , 2013, Proceedings of the National Academy of Sciences.

[64]  J. Padilla‐Gamiño,et al.  From Parent to Gamete: Vertical Transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the Reef Building Coral Montipora capitata , 2012, PloS one.

[65]  Anthony J. Bellantuono,et al.  Resistance to thermal stress in corals without changes in symbiont composition , 2012, Proceedings of the Royal Society B: Biological Sciences.

[66]  Jeffrey A. Maynard,et al.  Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress , 2012, PloS one.

[67]  B. Willis,et al.  Coral thermal tolerance shaped by local adaptation of photosymbionts , 2012 .

[68]  Y. Loya,et al.  Revisiting the winners and the losers a decade after coral bleaching , 2011 .

[69]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[70]  T. Oliver,et al.  Many corals host thermally resistant symbionts in high-temperature habitat , 2011, Coral Reefs.

[71]  C. Storlazzi,et al.  The use (and misuse) of sediment traps in coral reef environments: theory, observations, and suggested protocols , 2011, Coral Reefs.

[72]  T. Oliver,et al.  Do fluctuating temperature environments elevate coral thermal tolerance? , 2011, Coral Reefs.

[73]  X. Pochon,et al.  Variation in Symbiodinium ITS2 Sequence Assemblages among Coral Colonies , 2011, PloS one.

[74]  P. Kramer,et al.  Species composition, habitat, and water quality influence coral bleaching in southern Florida. , 2010 .

[75]  T. Done,et al.  Improved water quality can ameliorate effects of climate change on corals. , 2009, Ecological applications : a publication of the Ecological Society of America.

[76]  R. Galzin,et al.  Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef , 2009, Coral Reefs.

[77]  O. Hoegh-Guldberg,et al.  Ocean acidification causes bleaching and productivity loss in coral reef builders , 2008, Proceedings of the National Academy of Sciences.

[78]  B. Willis,et al.  Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress , 2008, Proceedings of the Royal Society B: Biological Sciences.

[79]  A. Edwards,et al.  One-Third of Reef-Building Corals Face Elevated Extinction Risk from Climate Change and Local Impacts , 2008, Science.

[80]  R. Berkelmans,et al.  A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization , 2008, Proceedings of the Royal Society B: Biological Sciences.

[81]  A. Grottoli,et al.  Energy reserves and metabolism as indicators of coral recovery from bleaching , 2007 .

[82]  O. Hoegh‐Guldberg,et al.  Bleaching, energetics, and coral mortality risk: Effects of temperature, light, and sediment regime , 2007 .

[83]  H. Lenihan,et al.  High spatial variability in coral bleaching around Moorea (French Polynesia): patterns across locations and water depths. , 2007, Comptes rendus biologies.

[84]  C. Parmesan Ecological and Evolutionary Responses to Recent Climate Change , 2006 .

[85]  Ray Berkelmans,et al.  The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change , 2006, Proceedings of the Royal Society B: Biological Sciences.

[86]  P. Ralph,et al.  Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae , 2006 .

[87]  G. Schmidt,et al.  Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion , 2006 .

[88]  O. Hoegh‐Guldberg,et al.  Global assessment of coral bleaching and required rates of adaptation under climate change , 2005, Global change biology.

[89]  E. Brown,et al.  Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii , 2004 .

[90]  R. Rowan Coral bleaching: Thermal adaptation in reef coral symbionts , 2004, Nature.

[91]  C. Juárez,et al.  Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event , 2004 .

[92]  William J. Skirving,et al.  A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions , 2004, Coral Reefs.

[93]  A. Baker Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium , 2003 .

[94]  M. Jennions,et al.  How much variance can be explained by ecologists and evolutionary biologists? , 2002, Oecologia.

[95]  Paul Marshall,et al.  Mortality, growth and reproduction in scleractinian corals following bleaching on the Great barrier Reef , 2002 .

[96]  A. Douglas,et al.  Experience shapes the susceptibility of a reef coral to bleaching , 2002, Coral Reefs.

[97]  Garry D. Peterson Contagious Disturbance, Ecological Memory, and the Emergence of Landscape Pattern , 2002, Ecosystems.

[98]  B. Brown,et al.  The influence of solar radiation on bleaching of shallow water reef corals in the Andaman Sea, 1993–1998 , 2001, Coral Reefs.

[99]  J. Bruno,et al.  El Niño related coral bleaching in Palau, Western Caroline Islands , 2001, Coral Reefs.

[100]  A. Baker Ecosystems: Reef corals bleach to survive change , 2001, Nature.

[101]  R. Woesik,et al.  Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event , 2001 .

[102]  K. Yamazato,et al.  Coral bleaching: the winners and the losers , 2001 .

[103]  A. Baird,et al.  Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa , 2000, Coral Reefs.

[104]  B. Brown,et al.  Coral bleaching: causes and consequences , 1997, Coral Reefs.

[105]  Peter W. Glynn,et al.  Coral reef bleaching: facts, hypotheses and implications , 1996 .

[106]  R. Buddemeier,et al.  CORAL BLEACHING AS AN ADAPTIVE MECHANISM : A TESTABLE HYPOTHESIS , 1993 .

[107]  L. Muscatine,et al.  Reef Corals: Mutualistic Symbioses Adapted to Nutrient-Poor Environments , 1977 .

[108]  M. Hixon,et al.  Autumn coral bleaching in Hawai‘i , 2021, Marine Ecology Progress Series.

[109]  H. Putnam,et al.  The physiological response of reef corals to diel fluctuations in seawater temperature , 2011 .

[110]  R. Gates,et al.  Clade D Symbiodinium in Scleractinian Corals: A “Nugget” of Hope, a Selfish Opportunist, an Ominous Sign, or All of the Above? , 2011 .