An expectation-maximization-based interacting multiple model approach for cooperative driving systems

In this paper, we present a novel combined sensor registration and fusion approach for cooperative driving in intelligent transportation systems (ITSs). A realistic augmented registration and fusion-state space model in three dimensions is first developed for dissimilar sensors. In order to have unbiased sensor registration parameter estimates, the expectation-maximization (EM) algorithm is incorporated with the extended Kalman filter (EKF) to give simultaneous state and parameter estimates. Furthermore, the interacting multiple model (IMM) filter is introduced here for collaborative driving in order to deal with the jumping model problem occurred in different vehicles driving status. To evaluate the registration and fusion performance, a new recursive relationship is derived theoretically for computing the posterior Cramer-Rao bound (PCRB). It is shown by simulation that the proposed EM-IMM-EKF method has a more robust estimation performance than the conventional approach. The performance is furthermore verified by comparing the mean square error with the PCRB.

[1]  A. Farina,et al.  Error performance bounds for tracking a manoeuvring target , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[2]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[3]  Shawn Michael Herman,et al.  A Particle Filtering Approach to Joint Passive Radar Tracking and Target Classification , 2002 .

[4]  R. Shumway,et al.  Dynamic linear models with switching , 1991 .

[5]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[6]  Qiang Ji,et al.  Camera calibration with genetic algorithms , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[7]  B. Ristic,et al.  Maximum likelihood registration for multiple dissimilar sensors , 2003 .

[8]  Simon Haykin,et al.  Unscented Kalman filter-trained recurrent neural equalizer for time-varying channels , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[9]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .

[10]  Kiyohito Tokuda,et al.  Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications , 2002, IEEE Trans. Intell. Transp. Syst..

[11]  Henry Leung,et al.  An exact maximum likelihood registration algorithm for data fusion , 1997, IEEE Trans. Signal Process..

[12]  Eloi Bosse,et al.  Registration of mobile sensors using the parallelized extended Kalman filter , 1997 .

[13]  A. Farina,et al.  Tracking a ballistic target: comparison of several nonlinear filters , 2002 .

[14]  A. Polychronopoulos,et al.  Multiple sensor collision avoidance system for automotive applications using an IMM approach for obstacle tracking , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[15]  William Dale Blair,et al.  Fixed-interval smoothing for Markovian switching systems , 1995, IEEE Trans. Inf. Theory.

[16]  Uli Kolbe,et al.  Multi-target multi-object radar tracking , 2003, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).

[17]  Hugh F. Durrant-Whyte,et al.  The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications , 2001, IEEE Trans. Robotics Autom..

[18]  Branko Ristic,et al.  Cramer-Rao bound for nonlinear filtering with Pd<1 and its application to target tracking , 2002, IEEE Trans. Signal Process..

[19]  Henry Leung,et al.  Simultaneous registration and fusion of multiple dissimilar sensors for cooperative driving , 2004, IEEE Transactions on Intelligent Transportation Systems.

[20]  Ehud Weinstein,et al.  Iterative and sequential algorithms for multisensor signal enhancement , 1994, IEEE Trans. Signal Process..

[21]  J. Farrell,et al.  The global positioning system and inertial navigation , 1999 .

[22]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[23]  K.C.J. Dietmayer,et al.  IMM object tracking for high dynamic driving maneuvers , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[24]  Sueo Sugimoto,et al.  Blind image identification and restoration for Noisy Blurred images based on discrete sine transform , 2003 .

[25]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[26]  R. Shumway,et al.  AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .

[27]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[28]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[29]  Qiang Ji,et al.  Camera calibration with genetic algorithms , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[30]  D. Simon,et al.  Kalman filtering with state equality constraints , 2002 .

[31]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[32]  Mark Campbell,et al.  Estimation architecture for future autonomous vehicles , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[33]  Robert J. Elliott,et al.  New finite-dimensional filters for parameter estimation of discrete-time linear Gaussian models , 1999, IEEE Trans. Autom. Control..

[34]  Lawrence A. Klein,et al.  Sensor Technologies and Data Requirements for Its , 2001 .

[35]  K. Weiss,et al.  Target modeling and dynamic classification for adaptive sensor data fusion , 2003, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).