Drosophila melanogaster as an emerging translational model of human nephrolithiasis.

[1]  E. Ritman,et al.  In vivo Drosophilia genetic model for calcium oxalate nephrolithiasis. , 2012, American journal of physiology. Renal physiology.

[2]  B. Hoppe An update on primary hyperoxaluria , 2012, Nature Reviews Nephrology.

[3]  M. Romero,et al.  Ion and solute transport by Prestin in Drosophila and Anopheles. , 2012, Journal of insect physiology.

[4]  D. Assimos Re: Ethylene glycol induces calcium oxalate crystal deposition in malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis. , 2012, The Journal of urology.

[5]  Wei-Yong Lin,et al.  Melamine-induced urolithiasis in a Drosophila model. , 2012, Journal of agricultural and food chemistry.

[6]  Hsin-Ping Liu,et al.  Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis. , 2011, Kidney international.

[7]  J. K. Kwon,et al.  A comparative study of experimental rat models of renal calcium oxalate stone formation. , 2011, Journal of endourology.

[8]  M. Romero,et al.  Drosophila provides rapid modeling of renal development, function, and disease. , 2010, American journal of physiology. Renal physiology.

[9]  P. Kapahi,et al.  1970 A NOVEL URINARY STONE ANIMAL MODEL USING DROSOPHILA MELANOGASTER , 2010 .

[10]  Ming-Tsang Wu,et al.  Urinary melamine and adult urolithiasis in Taiwan. , 2010, Clinica chimica acta; international journal of clinical chemistry.

[11]  B. Denholm,et al.  The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm , 2008, Nature.

[12]  M. Daudon,et al.  Nephrolithiasis related to inborn metabolic diseases , 2009, Pediatric Nephrology.

[13]  J. Parry Contaminated infant formula sickens 6200 babies in China , 2008, BMJ : British Medical Journal.

[14]  V. Kalasinsky,et al.  Characterization of Melamine-containing and Calcium Oxalate Crystals in Three Dogs with Suspected Pet Food-induced Nephrotoxicosis , 2008, Veterinary pathology.

[15]  N. Loh,et al.  Genetic causes of hypercalciuric nephrolithiasis , 2008, Pediatric Nephrology.

[16]  Shmuel Muallem,et al.  The solute carrier 26 family of proteins in epithelial ion transport. , 2008, Physiology.

[17]  L. Reiter,et al.  Drosophila orthologues to human disease genes: an update on progress. , 2008, Progress in nucleic acid research and molecular biology.

[18]  M. Romero,et al.  Renal physiology of SLC26 anion exchangers , 2007, Current opinion in nephrology and hypertension.

[19]  J. Dow,et al.  Using FlyAtlas to identify better Drosophila melanogaster models of human disease , 2007, Nature Genetics.

[20]  Zhang-qun Ye 叶章群,et al.  A comparative study on several models of experimental renal calcium oxalate stones formation in rats , 2007, Journal of Huazhong University of Science and Technology.

[21]  R. Hrebinko,et al.  Resection of recurrent inferior vena cava tumor after radical nephrectomy for renal cell carcinoma. , 2006, Urology.

[22]  Jing Wang,et al.  Function-informed transcriptome analysis of Drosophila renal tubule , 2004, Genome Biology.

[23]  M. O'Donnell,et al.  Inorganic and organic anion transport by insect renal epithelia. , 2003, Biochimica et biophysica acta.

[24]  P. Chandhoke,et al.  Hyperuricosuric calcium nephrolithiasis. , 2002, Endocrinology and metabolism clinics of North America.

[25]  Michael Gribskov,et al.  Homophila: human disease gene cognates in Drosophila , 2002, Nucleic Acids Res..

[26]  T. Hosoya,et al.  Mutation of human molybdenum cofactor sulfurase gene is responsible for classical xanthinuria type II. , 2001, Biochemical and biophysical research communications.

[27]  M. Romero,et al.  Cloning and Characterization of a Na+-driven Anion Exchanger (NDAE1) , 2000, The Journal of Biological Chemistry.

[28]  M. O'Donnell,et al.  Calcium homeostasis in larval and adult Drosophila melanogaster. , 2000, Archives of insect biochemistry and physiology.

[29]  M. R. Adams,et al.  Comparative genomics of the eukaryotes. , 2000, Science.

[30]  M. Romero,et al.  Cloning and characterization of a Na driven anion exchanger (NDAE1): a new bicarbonate transporter , 2000 .

[31]  K. Zierold,et al.  The formation of type-I concretions in Drosophila Malpighian tubules studied by electron microscopy and X-ray microanalysis. , 1999, Journal of insect physiology.

[32]  N. Kamatani,et al.  Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. , 1997, The Journal of clinical investigation.

[33]  J. Armstrong,et al.  Functional domains are specified to single-cell resolution in a Drosophila epithelium. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Kaiser,et al.  The malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of fluid secretion and its control. , 1994, The Journal of experimental biology.

[35]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[36]  K. Zierold,et al.  Two types of concretions in Drosophila Malpighian tubules as revealed by X-ray microanalysis: A study on urine formation , 1992 .

[37]  H. K. Mitchell,et al.  Hypoxanthine in rosy and maroon-like mutants of Drosophila melanogaster. , 1959, Science.