Superconvergence of the Velocity in Mimetic Finite Difference Methods on Quadrilaterals

Superconvergence of the velocity is established for mimetic finite difference approximations of second-order elliptic problems over $h^2$-uniform quadrilateral meshes. The superconvergence result holds for a full tensor coefficient. The analysis exploits the relation between mimetic finite differences and mixed finite element methods via a special quadrature rule for computing the scalar product in the velocity space. The theoretical results are confirmed by numerical experiments.

[1]  Jim E. Jones,et al.  Control‐volume mixed finite element methods , 1996 .

[2]  J. David Moulton,et al.  Convergence of mimetic finite difference discretizations of the diffusion equation , 2001, J. Num. Math..

[3]  J. Jr. Douglas,et al.  Superconvergence of mixed finite element methods on rectangular domains , 1989 .

[4]  Ricardo G. Durán,et al.  Superconvergence for rectangular mixed finite elements , 1990 .

[5]  M. Wheeler,et al.  Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .

[6]  Do Y. Kwak,et al.  A General Framework for Constructing and Analyzing Mixed Finite Volume Methods on Quadrilateral Grids: The Overlapping Covolume Case , 2001, SIAM J. Numer. Anal..

[7]  Mikhail Shashkov,et al.  Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .

[8]  Mikhail Shashkov,et al.  Mimetic finite difference methods for diffusion equations on non-orthogonal AMR meshes , 2003 .

[9]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[10]  Richard E. Ewing,et al.  Superconvergence of Mixed Finite Element Approximations over Quadrilaterals , 1993 .

[11]  A. Weiser,et al.  On convergence of block-centered finite differences for elliptic-problems , 1988 .

[12]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..

[13]  K. Stüben Algebraic multigrid (AMG): experiences and comparisons , 1983 .

[14]  Mary F. Wheeler,et al.  SOME SUPERCONVERGENCE RESULTS FOR MIXED FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS ON RECTANGULAR DOMAINS. , 1985 .

[15]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[16]  M. Shashkov,et al.  Mimetic Discretizations for Maxwell's Equations , 1999 .

[17]  Todd Arbogast,et al.  Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..

[18]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[19]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[20]  Mikhail Shashkov,et al.  Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes , 2004 .

[21]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[22]  M. Shashkov,et al.  A discrete operator calculus for finite difference approximations , 2000 .

[23]  T. F. Russell,et al.  Finite element and finite difference methods for continuous flows in porous media. , 1800 .

[24]  Richard E. Ewing,et al.  Superconvergence of the velocity along the Gauss lines in mixed finite element methods , 1991 .

[25]  M. Shashkov,et al.  A Local Support-Operators Diffusion Discretization Scheme for Quadrilateralr-zMeshes , 1998 .

[26]  I. Yotov,et al.  Mixed Finite Element Methods on Non-Matching Multiblock Grids , 1996 .

[27]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[28]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .