Laser cooling of antihydrogen atoms
暂无分享,去创建一个
Alan C. Evans | C. J. Baker | J. Wurtele | J. Fajans | J. Peszka | T. Momose | W. Hardy | S. Eriksson | M. Fujiwara | N. Madsen | C. Baker | W. Bertsche | A. Capra | C. Carruth | M. Charlton | R. Collister | N. Evetts | T. Friesen | D. Gill | J. Hangst | M. Hayden | C. A. Isaac | M. A. Johnson | J. Jones | S. A. Jones | S. Jonsell | A. Khramov | P. Knapp | L. Kurchaninov | D. Maxwell | J. Mckenna | S. Menary | J. Munich | K. Olchanski | A. Olin | P. Pusa | C. Rasmussen | F. Robicheaux | R. Sacramento | M. Sameed | E. Sarid | D. M. Silveira | G. Stutter | C. So | T. Tharp | R. Thompson | D. van der Werf | C. L. Cesar | A. Christensen | A. Mathad | P. Grandemange | P. Granum | D. Hodgkinson | E. Hunter | J. M. Michan | P. Mullan | A. Powell | D. Starko | A. Thibeault | J. McKenna | D. P. van der Werf | M. Johnson | M. Johnson | M. Johnson | L. Kurchaninov | D. M. Starko
[1] The Alpha Collaboration. Investigation of the fine structure of antihydrogen , 2020 .
[2] J. Wurtele,et al. Electron cyclotron resonance (ECR) magnetometry with a plasma reservoir , 2018, Physics of Plasmas.
[3] B. Mansoulié. Status of the GBAR experiment at CERN , 2019, Hyperfine Interactions.
[4] A. Capra,et al. Lifetime of magnetically trapped antihydrogen in ALPHA , 2019, Hyperfine Interactions.
[5] J. S. Savage,et al. Laser-driven production of the antihydrogen molecular ion , 2019, Physical Review A.
[6] A. Capra,et al. Machine learning for antihydrogen detection at ALPHA , 2018, Journal of Physics: Conference Series.
[7] E. A. Hessels,et al. Lyman-α source for laser cooling antihydrogen. , 2018, Optics letters.
[8] J. Fajans,et al. Axial to transverse energy mixing dynamics in octupole-based magnetostatic antihydrogen traps , 2018 .
[9] C. J. Baker,et al. Characterization of the 1S–2S transition in antihydrogen , 2018, Nature.
[10] A. Fontana,et al. AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[11] W. Bertsche. Prospects for comparison of matter and antimatter gravitation with ALPHA-g , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[12] E. G. Myers. CPT tests with the antihydrogen molecular ion , 2018, Physical Review A.
[13] C. J. Baker,et al. Antihydrogen accumulation for fundamental symmetry tests , 2017, Nature Communications.
[14] N. Madsen,et al. Aspects of 1S-2S spectroscopy of trapped antihydrogen atoms , 2017 .
[15] C. J. Baker,et al. Observation of the 1S–2S transition in trapped antihydrogen , 2016, Nature.
[16] C. J. Baker,et al. Observation of the hyperfine spectrum of antihydrogen , 2017, Nature.
[17] A. Zhmoginov,et al. An improved limit on the charge of antihydrogen from stochastic acceleration , 2016, Nature.
[18] T. Momose,et al. Narrowband solid state vuv coherent source for laser cooling of antihydrogen , 2015 .
[19] J. Wurtele,et al. In situ electromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap , 2014, 1405.0692.
[20] T. Momose,et al. Development of a Lyman-α laser system for spectroscopy and laser cooling of antihydrogen , 2014 .
[21] S. Federmann,et al. A source of antihydrogen for in-flight hyperfine spectroscopy , 2014, Nature Communications.
[22] A. Zhmoginov,et al. Antimatter interferometry for gravity measurements. , 2013, Physical review letters.
[23] S. Stracka. Real-time Detection of Antihydrogen Annihilations and Applications to Spectroscopy , 2014 .
[24] M. Fujiwara,et al. A proposal for laser cooling antihydrogen atoms , 2012, 1210.6103.
[25] Robert I. Thompson,et al. Silicon vertex detector upgrade in the ALPHA experiment , 2013 .
[26] J. Wurtele,et al. Resonant quantum transitions in trapped antihydrogen atoms , 2012, Nature.
[27] M C George,et al. Trapped Antihydrogen in Its Ground State , 2012 .
[28] J. Fajans,et al. Antihydrogen annihilation reconstruction with the ALPHA silicon detector , 2012 .
[29] T. Hänsch,et al. Improved measurement of the hydrogen 1S-2S transition frequency. , 2011, Physical review letters.
[30] Berkeley,et al. Confinement of antihydrogen for 1,000 seconds , 2011, 1104.4982.
[31] W. Phillips,et al. Pulsed Sisyphus scheme for laser cooling of atomic (anti)hydrogen. , 2011, Physical review letters.
[32] J. Wurtele,et al. Trapped antihydrogen , 2010, Nature.
[33] T. Hänsch,et al. Continuous-wave Lyman-alpha generation with solid-state lasers. , 2009, Optics express.
[34] J. Fajans,et al. A magnetic trap for antihydrogen confinement , 2006 .
[35] D. Kielpinski. Laser Cooling With Ultrafast Pulse Trains , 2003, quant-ph/0306099.
[36] H. Metcalf,et al. Laser Cooling and Trapping of Neutral Atoms , 2004 .
[37] E. A. Hessels,et al. Background-free observation of cold antihydrogen with field-ionization analysis of its states. , 2002, Physical review letters.
[38] A. Fontana,et al. Production and detection of cold antihydrogen atoms , 2002, Nature.
[39] J. Garreau,et al. Continuous-wave Doppler cooling of hydrogen atoms with two-photon transitions , 2000, physics/0010024.
[40] K. Eikema,et al. Continuous wave coherent Lyman-alpha radiation , 1999 .
[41] W. Phillips. Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .
[42] C. cohen-tannoudji,et al. Nobel Lecture: Manipulating atoms with photons , 1998 .
[43] S. Chu. Nobel Lecture: The manipulation of neutral particles , 1998 .
[44] S. Chu. The manipulation of neutral particles , 1998 .
[45] C. cohen-tannoudji. Manipulating atoms with photons , 1998 .
[46] M. Charlton,et al. Stored positrons for antihydrogen production , 1997 .
[47] J. Tuyn,et al. The Antiproton Decelerator: AD , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).
[48] Sandberg,et al. Two-Photon Spectroscopy of Trapped Atomic Hydrogen. , 1996, Physical review letters.
[49] Walraven,et al. Collisionless motion of neutral particles in magnetostatic traps. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.
[50] Reynolds,et al. Optical cooling of atomic hydrogen in a magnetic trap. , 1989, Physical review letters.
[51] D. Pritchard,et al. Laser cooling of magnetically trapped neutral atoms , 1992 .
[52] Murphy,et al. Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[53] Haas,et al. Cooling and slowing of trapped antiprotons below 100 meV. , 1989, Physical review letters.
[54] Walraven,et al. Experiments with atomic hydrogen in a magnetic trapping field. , 1988, Physical review letters.
[55] W. Kells,et al. Antihydrogen production using trapped plasmas , 1988 .
[56] D. Kleppner,et al. Magnetic Trapping of Spin-Polarized Atomic Hydrogen , 1987, Physical review letters.
[57] Haas,et al. First capture of antiprotons in a Penning trap: A kiloelectronvolt source. , 1986, Physical review letters.
[58] Hess,et al. Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. , 1986, Physical review. B, Condensed matter.
[59] M. Hohenstatt,et al. "Optical-sideband Cooling of Visible Atom Cloud Confined in Parabolic Well" , 1978 .
[60] F. L. Walls,et al. Radiation-Pressure Cooling of Bound Resonant Absorbers , 1978 .
[61] T. Hänsch,et al. Cooling of gases by laser radiation , 1975 .
[62] A. Ashkin. Acceleration and trapping of particles by radiation pressure , 1970 .