Laser cooling of antihydrogen atoms

[1]  The Alpha Collaboration Investigation of the fine structure of antihydrogen , 2020 .

[2]  J. Wurtele,et al.  Electron cyclotron resonance (ECR) magnetometry with a plasma reservoir , 2018, Physics of Plasmas.

[3]  B. Mansoulié Status of the GBAR experiment at CERN , 2019, Hyperfine Interactions.

[4]  A. Capra,et al.  Lifetime of magnetically trapped antihydrogen in ALPHA , 2019, Hyperfine Interactions.

[5]  J. S. Savage,et al.  Laser-driven production of the antihydrogen molecular ion , 2019, Physical Review A.

[6]  A. Capra Machine learning for antihydrogen detection at ALPHA , 2018, Journal of Physics: Conference Series.

[7]  E. A. Hessels,et al.  Lyman-α source for laser cooling antihydrogen. , 2018, Optics letters.

[8]  J. Fajans,et al.  Axial to transverse energy mixing dynamics in octupole-based magnetostatic antihydrogen traps , 2018 .

[9]  C. J. Baker,et al.  Characterization of the 1S–2S transition in antihydrogen , 2018, Nature.

[10]  A. Fontana,et al.  AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  W. Bertsche Prospects for comparison of matter and antimatter gravitation with ALPHA-g , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  E. G. Myers CPT tests with the antihydrogen molecular ion , 2018, Physical Review A.

[13]  C. J. Baker,et al.  Antihydrogen accumulation for fundamental symmetry tests , 2017, Nature Communications.

[14]  N. Madsen,et al.  Aspects of 1S-2S spectroscopy of trapped antihydrogen atoms , 2017 .

[15]  C. J. Baker,et al.  Observation of the 1S–2S transition in trapped antihydrogen , 2016, Nature.

[16]  C. J. Baker,et al.  Observation of the hyperfine spectrum of antihydrogen , 2017, Nature.

[17]  A. Zhmoginov,et al.  An improved limit on the charge of antihydrogen from stochastic acceleration , 2016, Nature.

[18]  T. Momose,et al.  Narrowband solid state vuv coherent source for laser cooling of antihydrogen , 2015 .

[19]  J. Wurtele,et al.  In situ electromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap , 2014, 1405.0692.

[20]  T. Momose,et al.  Development of a Lyman-α laser system for spectroscopy and laser cooling of antihydrogen , 2014 .

[21]  S. Federmann,et al.  A source of antihydrogen for in-flight hyperfine spectroscopy , 2014, Nature Communications.

[22]  A. Zhmoginov,et al.  Antimatter interferometry for gravity measurements. , 2013, Physical review letters.

[23]  S. Stracka Real-time Detection of Antihydrogen Annihilations and Applications to Spectroscopy , 2014 .

[24]  M. Fujiwara,et al.  A proposal for laser cooling antihydrogen atoms , 2012, 1210.6103.

[25]  Robert I. Thompson,et al.  Silicon vertex detector upgrade in the ALPHA experiment , 2013 .

[26]  J. Wurtele,et al.  Resonant quantum transitions in trapped antihydrogen atoms , 2012, Nature.

[27]  M C George,et al.  Trapped Antihydrogen in Its Ground State , 2012 .

[28]  J. Fajans,et al.  Antihydrogen annihilation reconstruction with the ALPHA silicon detector , 2012 .

[29]  T. Hänsch,et al.  Improved measurement of the hydrogen 1S-2S transition frequency. , 2011, Physical review letters.

[30]  Berkeley,et al.  Confinement of antihydrogen for 1,000 seconds , 2011, 1104.4982.

[31]  W. Phillips,et al.  Pulsed Sisyphus scheme for laser cooling of atomic (anti)hydrogen. , 2011, Physical review letters.

[32]  J. Wurtele,et al.  Trapped antihydrogen , 2010, Nature.

[33]  T. Hänsch,et al.  Continuous-wave Lyman-alpha generation with solid-state lasers. , 2009, Optics express.

[34]  J. Fajans,et al.  A magnetic trap for antihydrogen confinement , 2006 .

[35]  D. Kielpinski Laser Cooling With Ultrafast Pulse Trains , 2003, quant-ph/0306099.

[36]  H. Metcalf,et al.  Laser Cooling and Trapping of Neutral Atoms , 2004 .

[37]  E. A. Hessels,et al.  Background-free observation of cold antihydrogen with field-ionization analysis of its states. , 2002, Physical review letters.

[38]  A. Fontana,et al.  Production and detection of cold antihydrogen atoms , 2002, Nature.

[39]  J. Garreau,et al.  Continuous-wave Doppler cooling of hydrogen atoms with two-photon transitions , 2000, physics/0010024.

[40]  K. Eikema,et al.  Continuous wave coherent Lyman-alpha radiation , 1999 .

[41]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[42]  C. cohen-tannoudji,et al.  Nobel Lecture: Manipulating atoms with photons , 1998 .

[43]  S. Chu Nobel Lecture: The manipulation of neutral particles , 1998 .

[44]  S. Chu The manipulation of neutral particles , 1998 .

[45]  C. cohen-tannoudji Manipulating atoms with photons , 1998 .

[46]  M. Charlton,et al.  Stored positrons for antihydrogen production , 1997 .

[47]  J. Tuyn,et al.  The Antiproton Decelerator: AD , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).

[48]  Sandberg,et al.  Two-Photon Spectroscopy of Trapped Atomic Hydrogen. , 1996, Physical review letters.

[49]  Walraven,et al.  Collisionless motion of neutral particles in magnetostatic traps. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.

[50]  Reynolds,et al.  Optical cooling of atomic hydrogen in a magnetic trap. , 1989, Physical review letters.

[51]  D. Pritchard,et al.  Laser cooling of magnetically trapped neutral atoms , 1992 .

[52]  Murphy,et al.  Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[53]  Haas,et al.  Cooling and slowing of trapped antiprotons below 100 meV. , 1989, Physical review letters.

[54]  Walraven,et al.  Experiments with atomic hydrogen in a magnetic trapping field. , 1988, Physical review letters.

[55]  W. Kells,et al.  Antihydrogen production using trapped plasmas , 1988 .

[56]  D. Kleppner,et al.  Magnetic Trapping of Spin-Polarized Atomic Hydrogen , 1987, Physical review letters.

[57]  Haas,et al.  First capture of antiprotons in a Penning trap: A kiloelectronvolt source. , 1986, Physical review letters.

[58]  Hess,et al.  Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. , 1986, Physical review. B, Condensed matter.

[59]  M. Hohenstatt,et al.  "Optical-sideband Cooling of Visible Atom Cloud Confined in Parabolic Well" , 1978 .

[60]  F. L. Walls,et al.  Radiation-Pressure Cooling of Bound Resonant Absorbers , 1978 .

[61]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[62]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .