Generation of cardiac progenitor cells through epicardial to mesenchymal transition

[1]  W. Pu,et al.  Cellular origin and developmental program of coronary angiogenesis. , 2015, Circulation research.

[2]  D. Torella,et al.  Response to Molkentin's letter to the editor regarding article, "the absence of evidence is not evidence of absence: the pitfalls of Cre knock-ins in the c-kit locus". , 2014, Circulation research.

[3]  J. Molkentin,et al.  An emerging consensus on cardiac regeneration , 2014, Nature Medicine.

[4]  R. Harvey,et al.  Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells. , 2014, Stem cell research.

[5]  E. Olson,et al.  A neonatal blueprint for cardiac regeneration. , 2014, Stem cell research.

[6]  O. Bergmann,et al.  Cardiac regeneration in vivo: mending the heart from within? , 2014, Stem cell research.

[7]  S. Bhattacharya,et al.  Breast cancer stem cells, EMT and therapeutic targets. , 2014, Biochemical and biophysical research communications.

[8]  Duanqing Pei,et al.  The function and regulation of mesenchymal-to-epithelial transition in somatic cell reprogramming. , 2014, Current opinion in genetics & development.

[9]  J. Molkentin,et al.  Commentary: Absence of evidence is not evidence of absence. , 2020, The Journal of thoracic and cardiovascular surgery.

[10]  D. Medici,et al.  Signaling mechanisms of the epithelial-mesenchymal transition , 2014, Science Signaling.

[11]  Douglas L. Jones,et al.  Cardiac-Specific Overexpression of Human Stem Cell Factor Promotes Epicardial Activation and Arteriogenesis After Myocardial Infarction , 2014, Circulation. Heart failure.

[12]  S. Sheikh,et al.  Response to Sadek et al. and Kotlikoff et al. , 2014, Stem cell reports.

[13]  Richard T. Lee,et al.  Multi-Investigator Letter on Reproducibility of Neonatal Heart Regeneration following Apical Resection , 2014, Stem cell reports.

[14]  W. Pu,et al.  De novo formation of a distinct coronary vascular population in neonatal heart , 2014, Science.

[15]  D. Torella,et al.  The Absence of Evidence Is Not Evidence of Absence : The Pitfalls of Cre Knock-Ins in the C-Kit Locus , 2014 .

[16]  I. Weissman,et al.  Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice , 2014, Proceedings of the National Academy of Sciences.

[17]  E. Marbán,et al.  c-kit+ Cells Minimally Contribute Cardiomyocytes to the Heart , 2014, Nature.

[18]  Arjun Deb Cell-cell interaction in the heart via Wnt/β-catenin pathway after cardiac injury. , 2014, Cardiovascular research.

[19]  Xiaoke Yin,et al.  Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. , 2014, The Journal of clinical investigation.

[20]  N. S. Asli,et al.  Epicardial Origin of Resident Mesenchymal Stem Cells in the Adult Mammalian Heart , 2014 .

[21]  Y. M. Lee,et al.  Thymosin Beta4 Regulates Cardiac Valve Formation Via Endothelial-Mesenchymal Transformation in Zebrafish Embryos , 2014, Molecules and cells.

[22]  J. Vieira,et al.  Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. , 2014, Stem cells and development.

[23]  S. Sheikh,et al.  Do Neonatal Mouse Hearts Regenerate following Heart Apex Resection? , 2014, Stem cell reports.

[24]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[25]  S. Houser,et al.  Response to Torella et al. , 2014, Circulation research.

[26]  Daniele Torella,et al.  Adult c-kit(pos) cardiac stem cells fulfill Koch's postulates as causal agents for cardiac regeneration. , 2014, Circulation research.

[27]  G. Ronquist,et al.  Role of exosomes in myocardial remodeling. , 2014, Circulation research.

[28]  Douglas Losordo,et al.  Exosomes and cardiac repair after myocardial infarction. , 2014, Circulation research.

[29]  D. Yellon,et al.  Exosomes: Nanoparticles Involved in Cardioprotection? , 2014, Circulation research.

[30]  M. Record,et al.  Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. , 2014, Biochimica et biophysica acta.

[31]  Jing Yang,et al.  Epithelial–mesenchymal plasticity in carcinoma metastasis , 2013, Genes & development.

[32]  Steven R Houser,et al.  Are resident c-Kit+ cardiac stem cells really all that are needed to mend a broken heart? , 2013, Circulation research.

[33]  Roberto Bolli,et al.  Cell Therapy for Heart Failure: A Comprehensive Overview of Experimental and Clinical Studies, Current Challenges, and Future Directions , 2013, Circulation research.

[34]  Ciro Indolfi,et al.  Adult c-kitpos Cardiac Stem Cells Are Necessary and Sufficient for Functional Cardiac Regeneration and Repair , 2013, Cell.

[35]  R. Schwartz,et al.  Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries , 2013, Cell Research.

[36]  Richard T. Lee,et al.  Cardiac stem cell therapy and the promise of heart regeneration. , 2013, Cell stem cell.

[37]  A. Gramolini,et al.  The cardiovascular exosome: Current perspectives and potential , 2013, Proteomics.

[38]  Samy Lamouille,et al.  Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. , 2013, Current opinion in cell biology.

[39]  Y. Kaneda,et al.  The Transcription Factors Tbx18 and Wt1 Control the Epicardial Epithelial-Mesenchymal Transition through Bi-Directional Regulation of Slug in Murine Primary Epicardial Cells , 2013, PloS one.

[40]  R. Kalluri,et al.  miR-21 Promotes Fibrogenic Epithelial-to-Mesenchymal Transition of Epicardial Mesothelial Cells Involving Programmed Cell Death 4 and Sprouty-1 , 2013, PloS one.

[41]  M. Ashraf,et al.  Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. , 2013, Biochemical and biophysical research communications.

[42]  Richard T. Lee,et al.  Mammalian Heart Renewal by Preexisting Cardiomyocytes , 2012, Nature.

[43]  D. Zheng,et al.  Endocardial Cells Form the Coronary Arteries by Angiogenesis through Myocardial-Endocardial VEGF Signaling , 2012, Cell.

[44]  V. Fuster,et al.  Stem Cell Factor Gene Transfer Promotes Cardiac Repair After Myocardial Infarction via In Situ Recruitment and Expansion of c-kit + Cells , 2022 .

[45]  Yigang Wang,et al.  Inhibition of Histone Deacetylase-induced Myocardial Repair Is Mediated by c-kit in Infarcted Hearts* , 2012, The Journal of Biological Chemistry.

[46]  A. Moorman,et al.  Cardiac Regeneration from Activated Epicardium , 2012, PloS one.

[47]  C. Lien,et al.  Heart repair and regeneration: Recent insights from zebrafish studies , 2012, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[48]  M. Hesse,et al.  c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart , 2012, Proceedings of the National Academy of Sciences.

[49]  A. Kispert,et al.  Wt1 and Epicardial Fate Mapping , 2012, Circulation research.

[50]  M. Mercola,et al.  TGFβ-dependent epithelial-to-mesenchymal transition is required to generate cardiospheres from human adult heart biopsies. , 2012, Stem cells and development.

[51]  M. Gaballa,et al.  Cardiac Explant-Derived Cells Are Regulated by Notch-Modulated Mesenchymal Transition , 2012, PloS one.

[52]  R. Deberardinis,et al.  The Hypoxic Epicardial and Subepicardial Microenvironment , 2012, Journal of Cardiovascular Translational Research.

[53]  Peng Ru,et al.  miRNA-29b Suppresses Prostate Cancer Metastasis by Regulating Epithelial–Mesenchymal Transition Signaling , 2012, Molecular Cancer Therapeutics.

[54]  Junfeng Zhang,et al.  miR-30 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. , 2012, Biochemical and biophysical research communications.

[55]  Arjun Deb,et al.  Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair , 2012, The EMBO journal.

[56]  Leah B. Honor,et al.  Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. , 2012, Journal of molecular and cellular cardiology.

[57]  J. L. de la Pompa,et al.  Signaling During Epicardium and Coronary Vessel Development , 2011, Circulation research.

[58]  R. Moon,et al.  Wnt Signaling Exerts an Antiproliferative Effect on Adult Cardiac Progenitor Cells Through IGFBP3 , 2011, Circulation research.

[59]  N. S. Asli,et al.  Adult cardiac-resident MSC-like stem cells with a proepicardial origin. , 2011, Cell stem cell.

[60]  C. Indolfi,et al.  Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. , 2011, Journal of the American College of Cardiology.

[61]  R. Huang,et al.  Target cell movement in tumor and cardiovascular diseases based on the epithelial-mesenchymal transition concept. , 2011, Advanced drug delivery reviews.

[62]  J. Holdway,et al.  Development and Stem Cells Research Article , 2022 .

[63]  Mark F. Lythgoe,et al.  De novo cardiomyocytes from within the activated adult heart after injury , 2011, Nature.

[64]  S. Baek,et al.  Epicardial-Derived Cell Epithelial-to-Mesenchymal Transition and Fate Specification Require PDGF Receptor Signaling , 2011, Circulation research.

[65]  Leah B. Honor,et al.  Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. , 2011, The Journal of clinical investigation.

[66]  I. Fabregat,et al.  The transforming growth factor‐beta (TGF‐β) mediates acquisition of a mesenchymal stem cell‐like phenotype in human liver cells , 2011, Journal of cellular physiology.

[67]  M. Goumans,et al.  In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1 , 2011, Basic Research in Cardiology.

[68]  A. Kispert,et al.  Notch Signaling Regulates Smooth Muscle Differentiation of Epicardium-Derived Cells , 2011, Circulation research.

[69]  J. Holdway,et al.  Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. , 2011, Developmental cell.

[70]  E. Olson,et al.  Transient Regenerative Potential of the Neonatal Mouse Heart , 2011, Science.

[71]  A. Hatzopoulos,et al.  Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition , 2011, Disease Models & Mechanisms.

[72]  E. Olson,et al.  A Dynamic Notch Injury Response Activates Epicardium and Contributes to Fibrosis Repair , 2011, Circulation research.

[73]  M. Hung,et al.  p53 regulates epithelial-mesenchymal transition (EMT) and stem cell properties through modulating miRNAs , 2010, Nature Cell Biology.

[74]  M. Hung,et al.  p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs , 2011, Nature Cell Biology.

[75]  F. Di Meglio,et al.  Epicardial cells are missing from the surface of hearts with ischemic cardiomyopathy: a useful clue about the self-renewal potential of the adult human heart? , 2010, International journal of cardiology.

[76]  C. Bancone,et al.  Epithelial-mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart. , 2010, Journal of molecular and cellular cardiology.

[77]  B. Maisch,et al.  Intrapericardial procedures for cardiac regeneration by stem cells , 2010, Herz.

[78]  T. Thum,et al.  Circulating MicroRNAs as Biomarkers and Potential Paracrine Mediators of Cardiovascular Disease , 2010, Circulation. Cardiovascular genetics.

[79]  C. Lien,et al.  PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts , 2010, Proceedings of the National Academy of Sciences.

[80]  M. Soonpaa,et al.  Cardiomyogenic Potential of C-Kit+–Expressing Cells Derived From Neonatal and Adult Mouse Hearts , 2010, Circulation.

[81]  P. Doevendans,et al.  Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells , 2010, Journal of cellular and molecular medicine.

[82]  M. Capogrossi,et al.  Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. , 2010, Journal of molecular and cellular cardiology.

[83]  Ryan M. Anderson,et al.  Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes , 2010, Nature.

[84]  I. Weissman,et al.  Coronary arteries form by developmental reprogramming of venous cells , 2010, Nature.

[85]  G. Goodall,et al.  Myc-modulated miR-9 makes more metastases , 2010, Nature Cell Biology.

[86]  Abdelkader Essafi,et al.  Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin , 2009, Nature Genetics.

[87]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.

[88]  Robert E. Poelmann,et al.  A New Direction for Cardiac Regeneration TherapyCLINICAL PERSPECTIVE , 2009 .

[89]  Robert E. Poelmann,et al.  A New Direction for Cardiac Regeneration Therapy: Application of Synergistically Acting Epicardium-Derived Cells and Cardiomyocyte Progenitor Cells , 2009, Circulation. Heart failure.

[90]  João Ferreira-Martins,et al.  Clonality of mouse and human cardiomyogenesis in vivo , 2009, Proceedings of the National Academy of Sciences.

[91]  Changsun Choi,et al.  Cutaneous wound reepithelialization is compromised in mice lacking functional Slug (Snai2). , 2009, Journal of dermatological science.

[92]  C. Bearzi,et al.  Identification of a coronary vascular progenitor cell in the human heart , 2009, Proceedings of the National Academy of Sciences.

[93]  A. Moorman,et al.  Epicardium and Myocardium Separate From a Common Precursor Pool by Crosstalk Between Bone Morphogenetic Protein– and Fibroblast Growth Factor–Signaling Pathways , 2009, Circulation research.

[94]  Graça Raposo,et al.  Exosomes--vesicular carriers for intercellular communication. , 2009, Current opinion in cell biology.

[95]  Raghu Kalluri,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[96]  Jeffrey E. Thatcher,et al.  Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. , 2009, Journal of molecular and cellular cardiology.

[97]  A. Kispert,et al.  Tbx18 and the fate of epicardial progenitors , 2009, Nature.

[98]  M. Hesse,et al.  c-kit expression identifies cardiovascular precursors in the neonatal heart , 2009, Proceedings of the National Academy of Sciences.

[99]  Changsun Choi,et al.  Slug/Snai2 is a downstream mediator of epidermal growth factor receptor-stimulated reepithelialization. , 2009, The Journal of investigative dermatology.

[100]  Anna M. Krichevsky,et al.  miR-21: a small multi-faceted RNA , 2008, Journal of cellular and molecular medicine.

[101]  Samuel Bernard,et al.  Evidence for Cardiomyocyte Renewal in Humans , 2008, Science.

[102]  R. Kalluri,et al.  The role of endothelial-to-mesenchymal transition in cancer progression , 2008, British Journal of Cancer.

[103]  A. Puisieux,et al.  Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition , 2008, PloS one.

[104]  G. Alpini,et al.  Fate‐Mapping Evidence That Hepatic Stellate Cells Are Epithelial Progenitors in Adult Mouse Livers , 2008, Stem cells.

[105]  E. Bottinger,et al.  Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. , 2008, The Journal of clinical investigation.

[106]  Ju Chen,et al.  A myocardial lineage derives from Tbx18 epicardial cells , 2008, Nature.

[107]  Bin Zhou,et al.  Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart , 2008, Nature.

[108]  C. Bancone,et al.  CD117‐Positive Cells in Adult Human Heart Are Localized in the Subepicardium, and Their Activation Is Associated with Laminin‐1 and α6 Integrin Expression , 2008, Stem cells.

[109]  Buzz Baum,et al.  Transitions between epithelial and mesenchymal states in development and disease. , 2008, Seminars in cell & developmental biology.

[110]  G. Goodall,et al.  The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 , 2008, Nature Cell Biology.

[111]  B. Ciszek,et al.  Embryonic development of the proepicardium and coronary vessels. , 2008, The International journal of developmental biology.

[112]  M. Santini,et al.  Identification of Myocardial and Vascular Precursor Cells in Human and Mouse Epicardium , 2007, Circulation research.

[113]  M. DeRuiter,et al.  Origin, Fate, and Function of Epicardium-Derived Cells (EPDCs) in Normal and Abnormal Cardiac Development , 2007, TheScientificWorldJournal.

[114]  B. Willis,et al.  TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease , 2007 .

[115]  R. Kalluri,et al.  Fibroblasts Derive from Hepatocytes in Liver Fibrosis via Epithelial to Mesenchymal Transition* , 2007, Journal of Biological Chemistry.

[116]  Jeffrey Robbins,et al.  Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury , 2007, Nature Medicine.

[117]  Xueli Yuan,et al.  Endothelial-to-mesenchymal transition contributes to cardiac fibrosis , 2007, Nature Medicine.

[118]  S. Conway,et al.  Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage , 2007, TheScientificWorldJournal.

[119]  Chulan Kwon,et al.  Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors , 2007, Proceedings of the National Academy of Sciences.

[120]  P-M Chen,et al.  Thymosin β4 triggers an epithelial–mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase , 2007, Oncogene.

[121]  A. G. Gittenberger-de Groot,et al.  Cardiovascular development: towards biomedical applicability , 2007, Cellular and Molecular Life Sciences.

[122]  B. Hinz Formation and function of the myofibroblast during tissue repair. , 2007, The Journal of investigative dermatology.

[123]  Catherine A. Risebro,et al.  Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization , 2007, Nature.

[124]  C. Bearzi,et al.  Human cardiac stem cells , 2005, Proceedings of the National Academy of Sciences.

[125]  B. Willis,et al.  TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. , 2007, American journal of physiology. Lung cellular and molecular physiology.

[126]  R. Roberts,et al.  A Dynamic Epicardial Injury Response Supports Progenitor Cell Activity during Zebrafish Heart Regeneration , 2006, Cell.

[127]  D. Sheppard,et al.  Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix , 2006, Proceedings of the National Academy of Sciences.

[128]  A. Moorman,et al.  BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. , 2006, Developmental biology.

[129]  J. Burch,et al.  The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature , 2005, Development.

[130]  D. Torella,et al.  Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[131]  I. Fabregat,et al.  Snail blocks the cell cycle and confers resistance to cell death. , 2004, Genes & development.

[132]  J. Pérez-Pomares,et al.  The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[133]  D. Torella,et al.  Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration , 2003, Cell.

[134]  M. Bissell,et al.  Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. , 2003, The American journal of pathology.

[135]  S. Hubchak,et al.  TGF-β signal transduction and mesangial cell fibrogenesis , 2003 .

[136]  S. Hubchak,et al.  TGF-beta signal transduction and mesangial cell fibrogenesis. , 2003, American journal of physiology. Renal physiology.

[137]  T. Mikawa,et al.  This Review Is Part of a Thematic Series on Genetics of Cardiovascular Development, Which Includes the following Articles: Transcriptional Regulation of Vertebrate Cardiac Morphogenesis Cardiac Septation: a Late Contribution of the Embryonic Primary Myocardium to Heart Morphogenesis Early Signals in , 2022 .

[138]  Laurence Zitvogel,et al.  Exosomes: composition, biogenesis and function , 2002, Nature Reviews Immunology.

[139]  S. Dooley,et al.  Roles of TGF-beta in hepatic fibrosis. , 2002, Frontiers in bioscience : a journal and virtual library.

[140]  J. Pérez-Pomares,et al.  The Origin, Formation and Developmental Significance of the Epicardium: A Review , 2001, Cells Tissues Organs.

[141]  E. Hay An overview of epithelio-mesenchymal transformation. , 1995, Acta anatomica.

[142]  A. G. Gittenberger-de Groot,et al.  Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. , 1993, Circulation research.