Anti-coke BaFe1–xSnxO3−δ Oxygen Carriers for Enhanced Syngas Production via Chemical Looping Partial Oxidation of Methane

Iron-based oxides are promising oxygen carriers for chemical looping syngas production from methane; however, facile coke formation over reduced metallic Fe0 largely limits the syngas productivity....

[1]  Jonathan A. Fan,et al.  Near 100% CO selectivity in nanoscaled iron-based oxygen carriers for chemical looping methane partial oxidation , 2019, Nature Communications.

[2]  C. Detavernier,et al.  Pressure-induced deactivation of core-shell nanomaterials for catalyst-assisted chemical looping , 2019, Applied Catalysis B: Environmental.

[3]  Xiaodong Wang,et al.  Effect of Regeneration Period on the Selectivity of Synthesis Gas of Ba-Hexaaluminates in Chemical Looping Partial Oxidation of Methane , 2018, ACS Catalysis.

[4]  Jonathan A. Fan,et al.  Enhanced methane conversion in chemical looping partial oxidation systems using a copper doping modification , 2018, Applied Catalysis B: Environmental.

[5]  Jonathan A. Fan,et al.  Metal oxide redox chemistry for chemical looping processes , 2018, Nature Reviews Chemistry.

[6]  Aiqin Wang,et al.  In situ encapsulation of iron(0) for solar thermochemical syngas production over iron-based perovskite material , 2018, Communications Chemistry.

[7]  Fanxing Li,et al.  Perovskites as Geo-inspired Oxygen Storage Materials for Chemical Looping and Three-Way Catalysis: A Perspective , 2018, ACS Catalysis.

[8]  Tao Zhang,et al.  Microstructure and reactivity evolution of La Fe Al oxygen carrier for syngas production via chemical looping CH 4 CO 2 reforming , 2017 .

[9]  Liang Zeng,et al.  Enhanced Lattice Oxygen Reactivity over Ni-Modified WO3-Based Redox Catalysts for Chemical Looping Partial Oxidation of Methane , 2017 .

[10]  Hua Wang,et al.  Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane , 2017 .

[11]  Tao Zhang,et al.  Sn promoted BaFeO3−δ catalysts for N2O decomposition: Optimization of Fe active centers , 2017 .

[12]  K. Zhao,et al.  Perovskite-type oxides LaFe1−xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production , 2016 .

[13]  Can Li,et al.  Catalytic Function of IrOx in the Two-Step Thermochemical CO2-Splitting Reaction at High Temperatures , 2016 .

[14]  Maohong Fan,et al.  Progress in oxygen carrier development of methane-based chemical-looping reforming: A review , 2015 .

[15]  Fanxing Li,et al.  Effect of support on redox stability of iron oxide for chemical looping conversion of methane , 2015 .

[16]  Jianjun Liu,et al.  Tin Modification on Ni/Al2O3: Designing Potent Coke‐Resistant Catalysts for the Dry Reforming of Methane , 2014 .

[17]  Saurabh Bhavsar,et al.  Chemical looping: To combustion and beyond , 2014 .

[18]  K. Zhao,et al.  Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane , 2014 .

[19]  Hua Wang,et al.  Chemical-Looping Steam Methane Reforming over a CeO2–Fe2O3 Oxygen Carrier: Evolution of Its Structure and Reducibility , 2014 .

[20]  A. Beale,et al.  Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt-Sn/Al2O3 propane dehydrogenation catalysts. , 2013, Physical chemistry chemical physics : PCCP.

[21]  Hua Wang,et al.  Ce–Fe oxygen carriers for chemical-looping steam methane reforming , 2013 .

[22]  Fanxing Li,et al.  Iron Oxide with Facilitated O2– Transport for Facile Fuel Oxidation and CO2 Capture in a Chemical Looping Scheme , 2013 .

[23]  D. Duprez,et al.  Influence of lanthanum stoichiometry in La1−xFeO3−δ perovskites on their structure and catalytic performance in CH4 total oxidation , 2012 .

[24]  De Chen,et al.  Chemical looping methane partial oxidation: The effect of the crystal size and O content of LaFeO3 , 2012 .

[25]  Ian S. Metcalfe,et al.  Chemical looping and oxygen permeable ceramic membranes for hydrogen production – a review , 2012 .

[26]  Juan Adánez,et al.  Progress in chemical-looping combustion and reforming technologies , 2012 .

[27]  N. Tsubaki,et al.  Influence of preparation conditions to structure property, NOx and SO2 sorption behavior of the BaFeO3 − x perovskite catalyst , 2011 .

[28]  Vassilis Zaspalis,et al.  La1−xSrxMyFe1−yO3−δ perovskites as oxygen-carrier materials for chemical-looping reforming , 2011 .

[29]  A. Holmen,et al.  Catalytic Consequence of Oxygen of Lanthanum Ferrite Perovskite in Chemical Looping Reforming of Methane , 2011 .

[30]  A. Beale,et al.  A combined in situ time-resolved UV–Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and Pt-Sn propane dehydrogenation catalysts under industrial reaction conditions , 2010 .

[31]  Hua Wang,et al.  Syngas production from methane and air via a redox process using Ce-Fe mixed oxides as oxygen carriers , 2010 .

[32]  N. Tsubaki,et al.  BaFeO3−x Perovskite: An Efficient NOx Absorber with a High Sulfur Tolerance , 2010 .

[33]  Haibin Li,et al.  Synthesis Gas Generation by Chemical-Looping Reforming Using Ce-Based Oxygen Carriers Modified with Fe, Cu, and Mn Oxides , 2009 .

[34]  Touhami Mokrani,et al.  Gas Conversion to Liquid Fuels and Chemicals: The Methanol Route‐Catalysis and Processes Development , 2009 .

[35]  Juan Adánez,et al.  Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers , 2008 .

[36]  Irina I. Ivanova,et al.  Nanocomposites SnO2/Fe2O3: Sensor and catalytic properties , 2006 .

[37]  Haihui Wang,et al.  Novel cobalt-free oxygen permeable membrane. , 2004, Chemical communications.

[38]  A. Abad,et al.  Selection of Oxygen Carriers for Chemical-Looping Combustion , 2004 .

[39]  Q. Wang,et al.  Review of hydrogen production using chemical-looping technology , 2018 .

[40]  G. Veser,et al.  Physical mixtures as simple and efficient alternative to alloy carriers in chemical looping processes , 2017 .