The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor

[1]  R. J. Wainscoat,et al.  Pan-STARRS Photometric and Astrometric Calibration , 2016, The Astrophysical Journal Supplement Series.

[2]  B. Davies,et al.  The initial masses of the red supergiant progenitors to Type II supernovae , 2017, 1709.06116.

[3]  K. Maguire,et al.  PESSTO spectroscopic classification of optical transients , 2018 .

[4]  M. Phillips,et al.  The Carnegie Supernova Project I: analysis of stripped-envelope supernova light curves , 2017, 1707.07614.

[5]  C. Ott,et al.  Systematic survey of the effects of wind mass loss algorithms on the evolution of single massive stars , 2017, 1703.09705.

[6]  R. Foley,et al.  After the Fall: Late-Time Spectroscopy of Type IIP Supernovae , 2016, 1610.07654.

[7]  C. Kochanek,et al.  The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star , 2016, 1609.01283.

[8]  S. Smartt,et al.  The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase , 2016, 1605.06116.

[9]  R. Kotak,et al.  450 d of Type II SN 2013ej in optical and near-infrared , 2016, 1605.06117.

[10]  Davis,et al.  The diversity of Type II supernova versus the similarity in their progenitors , 2016, 1603.08953.

[11]  B. Gibson,et al.  Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914 , 2016, 1602.04156.

[12]  J. Sollerman,et al.  Metallicity from Type II supernovae from the (i)PTF , 2016, 1602.01433.

[13]  J. Prieto,et al.  Type II supernovae as probes of environment metallicity: observations of host H II regions , 2016, 1602.00011.

[14]  G. Williger,et al.  UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE , 2015, 1511.08402.

[15]  David Bersier,et al.  Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae , 2014, 1406.3667.

[16]  R. Kotak,et al.  450 Days of Type II SN 2013ej in Optical and Near-Infrared , 2016 .

[17]  M. Sullivan,et al.  LSQ13fn: A type II-Plateau supernova with a possibly low metallicity progenitor that breaks the standardised candle relation , 2015, 1511.01718.

[18]  H. Janka,et al.  CORE-COLLAPSE SUPERNOVAE FROM 9 TO 120 SOLAR MASSES BASED ON NEUTRINO-POWERED EXPLOSIONS , 2015, 1510.04643.

[19]  G. Gilmore,et al.  Gone without a bang: an archival HST survey for disappearing massive stars , 2015, 1507.05823.

[20]  S. Smartt Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.

[21]  B. Gibson,et al.  The Pan-STARRS Survey for Transients (PSST) - first announcement and public release , 2015 .

[22]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[23]  P. Massey,et al.  Impact of mass-loss on the evolution and pre-supernova properties of red supergiants , 2014, 1410.8721.

[24]  K. Maguire,et al.  Supersolar Ni/Fe production in the Type IIP SN 2012ec , 2014, 1410.8394.

[25]  Tokyo,et al.  Supernova 1987A: neutrino-driven explosions in three dimensions and light curves , 2014, 1412.4122.

[26]  B. Williams,et al.  THE SUPERNOVA PROGENITOR MASS DISTRIBUTIONS OF M31 AND M33: FURTHER EVIDENCE FOR AN UPPER MASS LIMIT , 2014, 1410.0018.

[27]  Ole Streicher,et al.  The MUSE Data Reduction Pipeline: Status after Preliminary Acceptance Europe , 2014, 1507.00034.

[28]  U. Munari,et al.  THE TYPE IIP SUPERNOVA 2012aw IN M95: HYDRODYNAMICAL MODELING OF THE PHOTOSPHERIC PHASE FROM ACCURATE SPECTROPHOTOMETRIC MONITORING , 2014, 1404.1294.

[29]  Kevin Krisciunas,et al.  CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE , 2014, 1403.7091.

[30]  S. E. Persson,et al.  Type II Plateau supernovae as metallicity probes of the Universe , 2014, 1403.1167.

[31]  V. Dwarkadas On the lack of X-ray bright Type IIP supernovae , 2014, 1402.5150.

[32]  N. Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.

[33]  R. Kotak,et al.  The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines , 2013, 1311.2031.

[34]  S. Smartt,et al.  The first month of evolution of the slow-rising Type IIP SN 2013ej in M74 , 2013, 1309.4269.

[35]  C. Kochanek FAILED SUPERNOVAE EXPLAIN THE COMPACT REMNANT MASS FUNCTION , 2013, 1308.0013.

[36]  S. Woosley,et al.  THE COMPACTNESS OF PRESUPERNOVA STELLAR CORES , 2013, 1311.6546.

[37]  L. Galbany,et al.  The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T e-based literature data , 2013, 1307.5316.

[38]  Z. Cano A new method for estimating the bolometric properties of Ibc supernovae , 2013, 1306.1488.

[39]  M. L. Pumo,et al.  Comparison of progenitor mass estimates for the type IIP SN 2012A , 2013, 1305.5789.

[40]  E. Livne,et al.  Type II-Plateau supernova radiation: dependences on progenitor and explosion properties , 2013, 1305.3386.

[41]  B. Kumar,et al.  Supernova 2012aw - a high-energy clone of archetypal type IIP SN 1999em , 2013, 1305.3152.

[42]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[43]  A. Chieffi,et al.  PRE-SUPERNOVA EVOLUTION OF ROTATING SOLAR METALLICITY STARS IN THE MASS RANGE 13–120 M☉ AND THEIR EXPLOSIVE YIELDS , 2012, 1212.2759.

[44]  J. Prieto,et al.  PROBING THE LOW-REDSHIFT STAR FORMATION RATE AS A FUNCTION OF METALLICITY THROUGH THE LOCAL ENVIRONMENTS OF TYPE II SUPERNOVAE , 2012, 1205.2338.

[45]  Thomas Ott,et al.  QFitsView: FITS file viewer , 2012 .

[46]  Center for Cosmology,et al.  ON ABSORPTION BY CIRCUMSTELLAR DUST, WITH THE PROGENITOR OF SN 2012aw AS A CASE STUDY , 2012, 1208.4111.

[47]  K. Maguire,et al.  The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling , 2012, 1208.2183.

[48]  H. Janka,et al.  NEW TWO-DIMENSIONAL MODELS OF SUPERNOVA EXPLOSIONS BY THE NEUTRINO-HEATING MECHANISM: EVIDENCE FOR DIFFERENT INSTABILITY REGIMES IN COLLAPSING STELLAR CORES , 2012, 1205.7078.

[49]  H. Janka,et al.  PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS , 2012, 1205.3657.

[50]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[51]  C. Georgy Yellow supergiants as supernova progenitors: an indication of strong mass loss for red supergiants? , 2011, 1111.7003.

[52]  K. Maguire,et al.  Constraining the physical properties of Type II-Plateau supernovae using nebular phase spectra , 2011, 1112.0035.

[53]  D. Holz,et al.  COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.

[54]  J. Eldridge,et al.  Circumstellar dust as a solution to the red supergiant supernova progenitor problem , 2011, 1109.4637.

[55]  W. Arnett,et al.  TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE , 2011, 1101.5646.

[56]  S. B. Cenko,et al.  THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES , 2010, 1011.4959.

[57]  C. Ott,et al.  BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE , 2010, 1010.5550.

[58]  E. Josselin,et al.  The mass-loss rates of red supergiants and the de Jager prescription , 2010, 1010.5369.

[59]  Ryan Chornock,et al.  Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.

[60]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[61]  L. Dessart,et al.  Non-LTE time-dependent spectroscopic modelling of Type II-plateau supernovae from the photospheric to the nebular phase: case study for 15 and 25 M⊙ progenitor stars , 2010, 1008.3238.

[62]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[63]  E. Livne,et al.  Determining the main-sequence mass of Type II supernova progenitors , 2010, 1006.2268.

[64]  Richard Walters,et al.  CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES , 2010, 1004.0615.

[65]  Spitzer Science Center,et al.  Optical and near infrared coverage of SN 2004et: physical parameters and comparison with other type IIP supernovae , 2009, 0912.3111.

[66]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[67]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.

[68]  G. Meynet,et al.  Stellar evolution with rotation XIII , 2008 .

[69]  S. Smartt,et al.  The VLT-FLAMES survey of massive stars: atmospheric parameters and rotational velocity distributions for B-type stars in the Magellanic Clouds , , 2007, 0711.2264.

[70]  Bangalore,et al.  Type IIP supernova SN 2004et: a multiwavelength study in X-ray, optical and radio , 2007, 0707.3485.

[71]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[72]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[73]  A. Zijlstra,et al.  An Empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich asymptotic giant branch stars , 2005, astro-ph/0504379.

[74]  K. Olsen,et al.  The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought , 2005, astro-ph/0504337.

[75]  G. Meynet,et al.  Stellar evolution with rotation XII. Pre-supernova models , 2004, astro-ph/0406552.

[76]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[77]  C. Tout,et al.  The progenitors of core-collapse supernovae , 2004, astro-ph/0405408.

[78]  M. Hamuy Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.

[79]  E.Cappellaro,et al.  Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2002, astro-ph/0209623.

[80]  Kazuhiro Shimasaku,et al.  The ugriz Standard-Star System , 2002 .

[81]  G. Meynet,et al.  Stellar Evolution with Rotation V: Changes in all the Outputs of Massive Star Models , 2000, astro-ph/0006404.

[82]  Andre Maeder,et al.  Stellar Evolution with Rotation , 2000 .

[83]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[84]  D. Arnett,et al.  Supernovae and Nucleosynthesis , 1996 .

[85]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[86]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[87]  N. Suntzeff,et al.  An optical spectrophotometric atlas of supernova 1987A in the LMC. II - CCD observations from day 198 to 805 , 1990 .

[88]  R. Chevalier,et al.  Late emission from SN 1987A , 1987 .

[89]  Daniel Enard,et al.  The ESO Faint Object Spectrograph and Camera / EFOSC , 1984 .

[90]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.

[91]  David Arnett,et al.  Radiation Dynamics, Envelope Ejection, and Supernova Light Curves , 1977 .