The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor
暂无分享,去创建一个
K. Maguire | S. Smartt | M. Sullivan | J. Sollerman | D. Young | K. Chambers | H. Flewelling | M. Huber | S. González-Gaitán | M. Stritzinger | G. Hosseinzadeh | S. Valenti | L. Galbany | N. Morrell | E. Magnier | C. Contreras | E. Hsiao | J. Anderson | T. W. Chen | C. Inserra | E. Kankare | S. Mattila | C. González | M. Stritzinger | L. Dessart | M. Fraser | C. Agliozzo | A. Jerkstrand | T. Krühler | S. Castellón | T. Lowe | C. Gutiérrez | M. Phillips | S. González-Gaitán | C. P. Gutiérrez | D. Young
[1] R. J. Wainscoat,et al. Pan-STARRS Photometric and Astrometric Calibration , 2016, The Astrophysical Journal Supplement Series.
[2] B. Davies,et al. The initial masses of the red supergiant progenitors to Type II supernovae , 2017, 1709.06116.
[3] K. Maguire,et al. PESSTO spectroscopic classification of optical transients , 2018 .
[4] M. Phillips,et al. The Carnegie Supernova Project I: analysis of stripped-envelope supernova light curves , 2017, 1707.07614.
[5] C. Ott,et al. Systematic survey of the effects of wind mass loss algorithms on the evolution of single massive stars , 2017, 1703.09705.
[6] R. Foley,et al. After the Fall: Late-Time Spectroscopy of Type IIP Supernovae , 2016, 1610.07654.
[7] C. Kochanek,et al. The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star , 2016, 1609.01283.
[8] S. Smartt,et al. The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase , 2016, 1605.06116.
[9] R. Kotak,et al. 450 d of Type II SN 2013ej in optical and near-infrared , 2016, 1605.06117.
[10] Davis,et al. The diversity of Type II supernova versus the similarity in their progenitors , 2016, 1603.08953.
[11] B. Gibson,et al. Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914 , 2016, 1602.04156.
[12] J. Sollerman,et al. Metallicity from Type II supernovae from the (i)PTF , 2016, 1602.01433.
[13] J. Prieto,et al. Type II supernovae as probes of environment metallicity: observations of host H II regions , 2016, 1602.00011.
[14] G. Williger,et al. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE , 2015, 1511.08402.
[15] David Bersier,et al. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae , 2014, 1406.3667.
[16] R. Kotak,et al. 450 Days of Type II SN 2013ej in Optical and Near-Infrared , 2016 .
[17] M. Sullivan,et al. LSQ13fn: A type II-Plateau supernova with a possibly low metallicity progenitor that breaks the standardised candle relation , 2015, 1511.01718.
[18] H. Janka,et al. CORE-COLLAPSE SUPERNOVAE FROM 9 TO 120 SOLAR MASSES BASED ON NEUTRINO-POWERED EXPLOSIONS , 2015, 1510.04643.
[19] G. Gilmore,et al. Gone without a bang: an archival HST survey for disappearing massive stars , 2015, 1507.05823.
[20] S. Smartt. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.
[21] B. Gibson,et al. The Pan-STARRS Survey for Transients (PSST) - first announcement and public release , 2015 .
[22] M. Sullivan,et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.
[23] P. Massey,et al. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants , 2014, 1410.8721.
[24] K. Maguire,et al. Supersolar Ni/Fe production in the Type IIP SN 2012ec , 2014, 1410.8394.
[25] Tokyo,et al. Supernova 1987A: neutrino-driven explosions in three dimensions and light curves , 2014, 1412.4122.
[26] B. Williams,et al. THE SUPERNOVA PROGENITOR MASS DISTRIBUTIONS OF M31 AND M33: FURTHER EVIDENCE FOR AN UPPER MASS LIMIT , 2014, 1410.0018.
[27] Ole Streicher,et al. The MUSE Data Reduction Pipeline: Status after Preliminary Acceptance Europe , 2014, 1507.00034.
[28] U. Munari,et al. THE TYPE IIP SUPERNOVA 2012aw IN M95: HYDRODYNAMICAL MODELING OF THE PHOTOSPHERIC PHASE FROM ACCURATE SPECTROPHOTOMETRIC MONITORING , 2014, 1404.1294.
[29] Kevin Krisciunas,et al. CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE , 2014, 1403.7091.
[30] S. E. Persson,et al. Type II Plateau supernovae as metallicity probes of the Universe , 2014, 1403.1167.
[31] V. Dwarkadas. On the lack of X-ray bright Type IIP supernovae , 2014, 1402.5150.
[32] N. Smith. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.
[33] R. Kotak,et al. The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines , 2013, 1311.2031.
[34] S. Smartt,et al. The first month of evolution of the slow-rising Type IIP SN 2013ej in M74 , 2013, 1309.4269.
[35] C. Kochanek. FAILED SUPERNOVAE EXPLAIN THE COMPACT REMNANT MASS FUNCTION , 2013, 1308.0013.
[36] S. Woosley,et al. THE COMPACTNESS OF PRESUPERNOVA STELLAR CORES , 2013, 1311.6546.
[37] L. Galbany,et al. The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T e-based literature data , 2013, 1307.5316.
[38] Z. Cano. A new method for estimating the bolometric properties of Ibc supernovae , 2013, 1306.1488.
[39] M. L. Pumo,et al. Comparison of progenitor mass estimates for the type IIP SN 2012A , 2013, 1305.5789.
[40] E. Livne,et al. Type II-Plateau supernova radiation: dependences on progenitor and explosion properties , 2013, 1305.3386.
[41] B. Kumar,et al. Supernova 2012aw - a high-energy clone of archetypal type IIP SN 1999em , 2013, 1305.3152.
[42] D. Dragomir,et al. Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.
[43] A. Chieffi,et al. PRE-SUPERNOVA EVOLUTION OF ROTATING SOLAR METALLICITY STARS IN THE MASS RANGE 13–120 M☉ AND THEIR EXPLOSIVE YIELDS , 2012, 1212.2759.
[44] J. Prieto,et al. PROBING THE LOW-REDSHIFT STAR FORMATION RATE AS A FUNCTION OF METALLICITY THROUGH THE LOCAL ENVIRONMENTS OF TYPE II SUPERNOVAE , 2012, 1205.2338.
[45] Thomas Ott,et al. QFitsView: FITS file viewer , 2012 .
[46] Center for Cosmology,et al. ON ABSORPTION BY CIRCUMSTELLAR DUST, WITH THE PROGENITOR OF SN 2012aw AS A CASE STUDY , 2012, 1208.4111.
[47] K. Maguire,et al. The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling , 2012, 1208.2183.
[48] H. Janka,et al. NEW TWO-DIMENSIONAL MODELS OF SUPERNOVA EXPLOSIONS BY THE NEUTRINO-HEATING MECHANISM: EVIDENCE FOR DIFFERENT INSTABILITY REGIMES IN COLLAPSING STELLAR CORES , 2012, 1205.7078.
[49] H. Janka,et al. PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS , 2012, 1205.3657.
[50] R. J. Wainscoat,et al. THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.
[51] C. Georgy. Yellow supergiants as supernova progenitors: an indication of strong mass loss for red supergiants? , 2011, 1111.7003.
[52] K. Maguire,et al. Constraining the physical properties of Type II-Plateau supernovae using nebular phase spectra , 2011, 1112.0035.
[53] D. Holz,et al. COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.
[54] J. Eldridge,et al. Circumstellar dust as a solution to the red supergiant supernova progenitor problem , 2011, 1109.4637.
[55] W. Arnett,et al. TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE , 2011, 1101.5646.
[56] S. B. Cenko,et al. THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES , 2010, 1011.4959.
[57] C. Ott,et al. BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE , 2010, 1010.5550.
[58] E. Josselin,et al. The mass-loss rates of red supergiants and the de Jager prescription , 2010, 1010.5369.
[59] Ryan Chornock,et al. Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.
[60] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[61] L. Dessart,et al. Non-LTE time-dependent spectroscopic modelling of Type II-plateau supernovae from the photospheric to the nebular phase: case study for 15 and 25 M⊙ progenitor stars , 2010, 1008.3238.
[62] Mohan Ganeshalingam,et al. Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.
[63] E. Livne,et al. Determining the main-sequence mass of Type II supernova progenitors , 2010, 1006.2268.
[64] Richard Walters,et al. CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES , 2010, 1004.0615.
[65] Spitzer Science Center,et al. Optical and near infrared coverage of SN 2004et: physical parameters and comparison with other type IIP supernovae , 2009, 0912.3111.
[66] A. J. Drake,et al. FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.
[67] Copenhagen,et al. The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.
[68] G. Meynet,et al. Stellar evolution with rotation XIII , 2008 .
[69] S. Smartt,et al. The VLT-FLAMES survey of massive stars: atmospheric parameters and rotational velocity distributions for B-type stars in the Magellanic Clouds , , 2007, 0711.2264.
[70] Bangalore,et al. Type IIP supernova SN 2004et: a multiwavelength study in X-ray, optical and radio , 2007, 0707.3485.
[71] J. Tonry,et al. Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.
[72] Wendy L. Freedman,et al. The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.
[73] A. Zijlstra,et al. An Empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich asymptotic giant branch stars , 2005, astro-ph/0504379.
[74] K. Olsen,et al. The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought , 2005, astro-ph/0504337.
[75] G. Meynet,et al. Stellar evolution with rotation XII. Pre-supernova models , 2004, astro-ph/0406552.
[76] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[77] C. Tout,et al. The progenitors of core-collapse supernovae , 2004, astro-ph/0405408.
[78] M. Hamuy. Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.
[79] E.Cappellaro,et al. Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2002, astro-ph/0209623.
[80] Kazuhiro Shimasaku,et al. The ugriz Standard-Star System , 2002 .
[81] G. Meynet,et al. Stellar Evolution with Rotation V: Changes in all the Outputs of Massive Star Models , 2000, astro-ph/0006404.
[82] Andre Maeder,et al. Stellar Evolution with Rotation , 2000 .
[83] Edward L. Fitzpatrick,et al. Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.
[84] D. Arnett,et al. Supernovae and Nucleosynthesis , 1996 .
[85] S. Woosley,et al. The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .
[86] Arlo U. Landolt,et al. UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .
[87] N. Suntzeff,et al. An optical spectrophotometric atlas of supernova 1987A in the LMC. II - CCD observations from day 198 to 805 , 1990 .
[88] R. Chevalier,et al. Late emission from SN 1987A , 1987 .
[89] Daniel Enard,et al. The ESO Faint Object Spectrograph and Camera / EFOSC , 1984 .
[90] S. Woosley,et al. EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.
[91] David Arnett,et al. Radiation Dynamics, Envelope Ejection, and Supernova Light Curves , 1977 .