Community Assessment Using Evidence Networks

Community mining is a prominent approach for identifying (user) communities in social and ubiquitous contexts. While there are a variety of methods for community mining and detection, the effective evaluation and validation of the mined communities is usually non-trivial. Often there is no evaluation data at hand in order to validate the discovered groups. This paper proposes an approach for (relative) community assessment. We introduce a set of so-called evidence networks which are capturing typical interactions in social network applications. Thus, we are able to apply a rich set of implicit information for the evaluation of communities. The presented evaluation approach is based on the idea of reconstructing existing social structures for the assessment and evaluation of a given clustering. We analyze and compare the presented approach applying user data from the real-world social bookmarking application BibSonomy. The results indicate that the evidence networks reflect the relative rating of the explicit ones very well.

[1]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[2]  Daniel A. Keim,et al.  On Knowledge Discovery and Data Mining , 1997 .

[3]  Stefan Siersdorfer,et al.  Social recommender systems for web 2.0 folksonomies , 2009, HT '09.

[4]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[5]  Juan A. Almendral,et al.  The network of scientific collaborations within the European framework programme , 2007, 0901.3375.

[6]  E A Leicht,et al.  Community structure in directed networks. , 2007, Physical review letters.

[7]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[8]  A. Agresti An introduction to categorical data analysis , 1997 .

[9]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[10]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[11]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[12]  Dominik Benz,et al.  Visit me, click me, be my friend: an analysis of evidence networks of user relationships in BibSonomy , 2010, HT '10.

[13]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[14]  JäschkeRobert,et al.  The social bookmark and publication management system bibsonomy , 2010, VLDB 2010.

[15]  Rossano Schifanella,et al.  Folks in Folksonomies: social link prediction from shared metadata , 2010, WSDM '10.

[16]  Ciro Cattuto,et al.  Semantics, Sensors, and the Social Web: The Live Social Semantics Experiments , 2010, ESWC.

[17]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[18]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[19]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[20]  Said Kashoob,et al.  Community-based ranking of the social web , 2010, HT '10.

[21]  Claudio Castellano,et al.  Community Structure in Graphs , 2007, Encyclopedia of Complexity and Systems Science.

[22]  M. V. Valkenburg Network Analysis , 1964 .

[23]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[24]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[25]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[26]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Vittorio Loreto,et al.  Network properties of folksonomies , 2007, AI Commun..

[28]  Ioannis G. Nikolakopoulos,et al.  An evaluation study of clustering algorithms in the scope of user communities assessment , 2009, Comput. Math. Appl..

[29]  Ricardo A. Baeza-Yates,et al.  Extracting semantic relations from query logs , 2007, KDD '07.

[30]  Dominik Benz,et al.  The social bookmark and publication management system bibsonomy , 2010, The VLDB Journal.

[31]  Andreas Hotho,et al.  Logsonomy - social information retrieval with logdata , 2008, Hypertext.

[32]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[33]  M Cieplak 蛋白質の折りたたみにおける協調性と接触秩序 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2004 .

[34]  Malcolm P. Atkinson,et al.  Issues Raised by Three Years of Developing PJama: An Orthogonally Persistent Platform for Java , 1999, ICDT.

[35]  Jon M. Kleinberg,et al.  Feedback effects between similarity and social influence in online communities , 2008, KDD.

[36]  M. Newman,et al.  Why social networks are different from other types of networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.