Sample-based Cameras for Fast Accurate Reflections

This paper presents sample-based cameras for rendering accurate reflections on curved reflectors at interactive rates. 'The method supports change of view, moving objects and reflectors, higher order reflections, view-dependent lighting of reflected objects, and reflector surface properties. In order to render reflections with the feed forward graphics pipeline, one has to compute the image points where a reflected scene point projects. A sample-based camera is a collection of BSP trees of pinhole cameras that jointly approxinlate the projection function. It is constructed from the reflected rays defined by the desired view and the scene reflectors. A scene point is projected by invoking the cameras that contain it in their frustums. Reflections are rendered by projecting the scene geometry then rasterizing in hardware.

[1]  Tomas Pajdla,et al.  Geometry of Two-Slit Camera , 2002 .

[2]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[3]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[4]  Linda G. Shapiro,et al.  View-base Rendering: Visualizing Real Objects from Scanned Range and Color Data , 1997, Rendering Techniques.

[5]  John M. Snyder,et al.  Parameterized environment maps , 2001, I3D '01.

[6]  Tom McREYNOLDS,et al.  Programming with OpenGL: Advanced Rendering , 1996 .

[7]  Ned Greene,et al.  Environment Mapping and Other Applications of World Projections , 1986, IEEE Computer Graphics and Applications.

[8]  Anselmo Lastra,et al.  Increased photorealism for interactive architectural walkthroughs , 1999, SI3D.

[9]  David Salesin,et al.  Multiperspective panoramas for cel animation , 1997, SIGGRAPH.

[10]  Paul Diefenbach,et al.  Pipeline rendering: interaction and realism through hardware-based multi-pass rendering , 1996 .

[11]  Marc Olano,et al.  Reflection space image based rendering , 1999, SIGGRAPH.

[12]  Douglas Voorhies,et al.  Reflection vector shading hardware , 1994, SIGGRAPH.

[13]  Leonard McMillan,et al.  General Linear Cameras , 2004, ECCV.

[14]  Pat Hanrahan,et al.  Illumination from curved reflectors , 1992, SIGGRAPH.

[15]  David Salesin,et al.  Surface light fields for 3D photography , 2000, SIGGRAPH.

[16]  Pat Hanrahan,et al.  Ray tracing on a connection machine , 1988, ICS '88.

[17]  Gavin S. P. Miller,et al.  Lazy Decompression of Surface Light Fields for Precomputed Global Illumination , 1998, Rendering Techniques.

[18]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[19]  Markus Wagner,et al.  Interactive Distributed Ray Tracing of Highly Complex Models , 2001, Rendering Techniques.

[20]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[21]  Markus Wagner,et al.  Interactive Rendering with Coherent Ray Tracing , 2001, Comput. Graph. Forum.

[22]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[23]  Yizhou Yu,et al.  Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping , 1998, Rendering Techniques.

[24]  James F. Blinn,et al.  Texture and reflection in computer generated images , 1976, CACM.

[25]  Peter-Pike J. Sloan,et al.  Interactive ray tracing , 1999, SI3D.

[26]  Dani Lischinski,et al.  Image-Based Rendering for Non-Diffuse Synthetic Scenes , 1998, Rendering Techniques.

[27]  Andrew S. Glassner,et al.  An introduction to ray tracing , 1989 .

[28]  Kellogg S. Booth,et al.  Report from the chair , 1986 .

[29]  Rajiv Gupta,et al.  Linear Pushbroom Cameras , 1994, ECCV.

[30]  Paul Rademacher,et al.  Multiple-center-of-projection images , 1998, SIGGRAPH.

[31]  Bui Tuong Phong Illuminat~on for computer generated images , 1973 .

[32]  Ari Rappoport,et al.  Interactive reflections on curved objects , 1998, SIGGRAPH.

[33]  Hans-Peter Seidel,et al.  Light Field Techniques for Reflections and Refractions , 1999, Rendering Techniques.