Stoichiometry of proton movements coupled to ATP synthesis driven by a pH gradient inStreptococcus lactis

[1]  P. Maloney,et al.  ATP synthesis driven by a protonmotive force inStreptococcus lactis , 1975, The Journal of Membrane Biology.

[2]  F. Harold,et al.  Cation transport and electrogenesis byStreptococcus faecalis , 2005, The Journal of Membrane Biology.

[3]  D. Janssen,et al.  Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus , 1978, Archives of Microbiology.

[4]  P. Maloney Chapter 10 Coupling between H+ Entry and ATP Synthesis in Bacteria , 1982 .

[5]  E. R. Kashket Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions , 1981, Journal of bacteriology.

[6]  A. Waggoner,et al.  The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis. , 1981, The Journal of biological chemistry.

[7]  R. H. Fillingame Biochemistry and Genetics of Bacterial H+-Translocating ATPases , 1981 .

[8]  P. Pedersen,et al.  Regulation of the Synthesis and Hydrolysis of ATP in Biological Systems: Role of Peptide Inhibitors of H+-ATPases , 1981 .

[9]  A. Lehninger,et al.  RESPIRATION‐COUPLED H+ EJECTION BY MITOCHONDRIA , 1980, Annals of the New York Academy of Sciences.

[10]  D. Deamer,et al.  Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Deamer,et al.  Measurement of net proton-hydroxyl permeability of large unilamellar liposomes with the fluorescent pH probe, 9-aminoacridine. , 1980, Biochimica et biophysica acta.

[12]  P. Maloney,et al.  Voltage sensitivity of the proton‐translocating adenosine 5′‐triphosphatase in Streptococcus lactis , 1980, FEBS letters.

[13]  P. Sternweis,et al.  Characterization of the inhibitory (epsilon) subunit of the proton-translocating adenosine triphosphatase from Escherichia coli. , 1980, Biochemistry.

[14]  M. Futai,et al.  Role of Subunits in Proton-Translocating ATPase (F0–F1) , 1980 .

[15]  P. Maloney Membrane H+ conductance of Streptococcus lactis , 1979, Journal of Bacteriology.

[16]  P. Mitchell The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. , 1979, European journal of biochemistry.

[17]  J. Jackson,et al.  Two protons transferred per ATP synthesised after flash activation of chromatophores from photosynthetic bacteria , 1979 .

[18]  G. Cox,et al.  Membrane adenosine triphosphatases of prokaryotic cells. , 1979, Annual review of biochemistry.

[19]  D. Harris,et al.  A thermodynamic analysis of the interaction between the mitochondrial coupling adenosine triphosphatase and its naturally occurring inhibitor protein. , 1978, The Biochemical journal.

[20]  Y. Kagawa Reconstitution of the energy transformer, gate and channel subunit reassembly, crystalline ATPase and ATP synthesis. , 1978, Biochimica et biophysica acta.

[21]  H. Morowitz Proton semiconductors and energy transduction in biological systems. , 1978, The American journal of physiology.

[22]  P. Maloney Coupling between H+ entry and ATP formation in Escherichia coli. , 1978, Biochemical and biophysical research communications.

[23]  A. Crofts,et al.  The initial stages of photophosphorylation. Studies using excitation by saturating, short flashes of light. , 1978, Biochimica et biophysica acta.

[24]  P. Maloney Obligatory Coupling Between Proton Entry and the Synthesis of Adenosine 5′-Triphosphate in Streptococcus lactis , 1978, Journal of bacteriology.

[25]  P. Maloney Obligatory coupling between proton entry and the synthesis of adenosine 5'-triphosphate in Streptococcus lactis , 1977 .

[26]  V. Skulachev,et al.  H+-Adenosine triphosphatase and membrane energy coupling. , 1977, Biochimica et biophysica acta.

[27]  P. Sternweis,et al.  Purification of membrane attachment and inhibitory subunits of the proton translocating adenosine triphosphatase from Escherichia coli. , 1977, Biochemistry.

[28]  F. Harold Membranes and Energy Transduction in Bacteria1 1Abbreviations: Δψ, membrane potential; ΔpH, pH gradient; Δp, proton-motive force. These are related by: Δp = Δψ - (23RT/F) ΔpH ≅ Δψ - 60 ΔpH. ANS, l-anilino-8-naphthalene sulfonate; DCCD, N, N'-dicyclohexylcarbodiimide; CCCP, carbonylcyanide-m-chloroph , 1977 .

[29]  A. Essig Energetics of active transport. , 1977, Advances in biological and medical physics.

[30]  A. Finkelstein,et al.  Water and nonelectrolyte permeability of lipid bilayer membranes , 1976, The Journal of general physiology.

[31]  P. Maloney,et al.  Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli , 1976, Journal of bacteriology.

[32]  P. Boyer A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport , 1975, FEBS letters.

[33]  P. Maloney,et al.  Methods for Studying Transport in Bacteria , 1975 .

[34]  L. van Deenen,et al.  Kinetics of the valinomycin-induced potassium ion leak from liposomes with potassium thiocyanate enclosed. , 1974, Biochimica et biophysica acta.

[35]  P. Maloney,et al.  A protonmotive force drives ATP synthesis in bacteria. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Mitchell A chemiosmotic molecular mechanism for proton‐translocating adenosine triphosphatases , 1974, FEBS letters.

[37]  R. Veech,et al.  The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate-citrate lyase reactions. , 1973, The Journal of biological chemistry.

[38]  F. Harold,et al.  Cation transport and electrogenesis by Streptococcus faecalis. I. The membrane potential. , 1972, The Journal of membrane biology.

[39]  E. R. Kashket,et al.  Role of Metabolic Energy in the Transport of β-Galactosides by Streptococcus lactis , 1972, Journal of bacteriology.

[40]  Robert G. Martin,et al.  [147] Enzymes and intermediates of histidine biosynthesis in Salmonella typhimurium , 1971 .

[41]  P. Mitchell,et al.  Acid-base titration across the plasma membrane ofMicrococcus denitrificans: Factors affecting the effective proton conductance and the respiratory rate , 1970, Journal of bioenergetics.

[42]  F. Harold,et al.  A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide. , 1970, Biochimica et biophysica acta.

[43]  P. Mitchell,et al.  Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers. , 1967, The Biochemical journal.

[44]  Ames,et al.  [Methods in Enzymology] Complex Carbohydrates Volume 8 || [10] Assay of inorganic phosphate, total phosphate and phosphatases , 1966 .

[45]  B. Ames ASSAY OF INORGANIC PHOSPHATE, TOTAL PHOSPHATE AND PHOSPHATASE , 1966 .

[46]  Jacob Kielland Individual Activity Coefficients of Ions in Aqueous Solutions , 1937 .