Enhancing Electrochemical Performance and Sulfur Tolerance of Ni- Based Anodes Coated by Srti0.5mo0.2ni0.3-Xo3−Δ Perovskite with Nano-Nickel for Solid Oxide Fuel Cells

[1]  Habip Gökay Korkmaz,et al.  Estimation of microscale redox tolerance for Ni-based solid oxide fuel cell anodes via three-dimensional finite element modeling , 2022, International Journal of Hydrogen Energy.

[2]  Zixiang Su,et al.  Multi-criteria assessment of an environmentally-friendly scheme integrating solid oxide fuel cell hybrid power and renewable energy auxiliary supply , 2022, Journal of Cleaner Production.

[3]  A. Nemudry,et al.  Comparison of stationary and transient kinetic methods in determining the rate of surface exchange reaction between molecular oxygen and MIEC perovskite , 2022, Chemical Engineering Journal.

[4]  Tong Liu,et al.  Review: Measurement of partial electrical conductivities and transport numbers of mixed ionic-electronic conducting oxides , 2022, Journal of Power Sources.

[5]  A. Glisenti,et al.  Exsolution in Ni-doped lanthanum strontium titanate: a perovskite-based material for anode application in ammonia-fed Solid Oxide Fuel Cell , 2022, International Journal of Hydrogen Energy.

[6]  Panpan Zhang,et al.  Progress report on the catalyst layers for hydrocarbon-fueled SOFCs , 2021, International Journal of Hydrogen Energy.

[7]  Q. Cai,et al.  Green synthesis and characterisation of nanocrystalline NiO-GDC powders with low activation energy for solid oxide fuel cells , 2021, Ceramics International.

[8]  F. Chen,et al.  Enhanced electrochemical performance and durability for direct CH4–CO2 solid oxide fuel cells with an on-cell reforming layer , 2021 .

[9]  Zhiyi Li,et al.  Performance degradation prediction of direct internal reforming solid oxide fuel cell due to Ni-particle coarsening in composite anode , 2021 .

[10]  A. Maignan,et al.  Undoped Sr2MMoO6 Double Perovskite Molybdates (M = Ni, Mg, Fe) as Promising Anode Materials for Solid Oxide Fuel Cells , 2021, Materials.

[11]  Fujun Zhang,et al.  Methane conversion reactions over LaNi-YSZ and Ni-YSZ anodes of solid oxide fuel cell , 2020 .

[12]  T. He,et al.  Sr- and Mo-deficiency Sr1.95TiMo1−O6– double perovskites as anodes for solid-oxide fuel cells using H2S-containing syngas , 2020 .

[13]  K. Zheng Ti-doped Sr2Fe1.4-xTixMo0.6O6-δ double perovskites with improved stability as anode materials for Solid Oxide Fuel Cells , 2020 .

[14]  J. Han,et al.  Development of Ni-based alloy catalysts to improve the sulfur poisoning resistance of Ni/YSZ anodes in SOFCs , 2020 .

[15]  Z. Lü,et al.  Investigations on sulfur poisoning mechanisms of a solid oxide fuel cell with niobium-doped ferrate perovskite anode , 2020 .

[16]  T. He,et al.  Highly carbon– and sulfur–tolerant Sr2TiMoO6−δ double perovskite anode for solid oxide fuel cells , 2019, International Journal of Hydrogen Energy.

[17]  L. Tong,et al.  Dielectric behavior of Ce1-Gd O2-δ (0≤ x ≤0.1) ceramics prepared by sol-gel method , 2019, Journal of Alloys and Compounds.

[18]  T. He,et al.  Pd-impregnated Sr1.9VMoO6– double perovskite as an efficient and stable anode for solid-oxide fuel cells operating on sulfur-containing syngas , 2018, Electrochimica Acta.

[19]  Q. Cai,et al.  Nanocrystalline gadolinium-doped ceria (GDC) for SOFCs by an environmentally-friendly single step method , 2018, Ceramics International.

[20]  Wei Zhou,et al.  Rational Design of a Water‐Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance , 2017, Advanced science.

[21]  Yongdan Li,et al.  Molybdenum substitution at the B-site of lanthanum strontium titanate anodes for solid oxide fuel cells , 2017 .

[22]  T. Maiti,et al.  Environmental friendly Sr2TiMoO6 double perovskite for high temperature thermoelectric applications , 2017 .

[23]  Xingbao Zhu,et al.  Performance and sulfur poisoning of Ni/CeO2 impregnated La0.75Sr0.25Cr0.5Mn0.5O3−δ anode in solid oxide fuel cells , 2015 .

[24]  A. Banerjee,et al.  Progress in material selection for solid oxide fuel cell technology: A review , 2015 .

[25]  F. Chen,et al.  Sulfur‐Tolerant Hierarchically Porous Ceramic Anode‐Supported Solid‐Oxide Fuel Cells with Self‐Precipitated Nanocatalyst , 2015 .

[26]  S. C. Ammal,et al.  Mechanism of Sulfur Poisoning of Sr 2 Fe 1.5 Mo 0.5 O 6-δ Perovskite Anode under Solid Oxide Fuel Cell Conditions , 2014 .

[27]  Yongna Shen,et al.  Evaluation of La0.3Sr0.7Ti1−xCoxO3 as a potential cathode material for solid oxide fuel cells , 2014 .

[28]  Dandan Xu,et al.  Performance of Y0.9Sr0.1Cr0.9Fe0.1O3−δ as a sulfur-tolerant anode material for intermediate temperate solid oxide fuel cells , 2014 .

[29]  J. H. Kim,et al.  Ce0.9Gd0.1O1.95 supported La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes for solid oxide fuel cells , 2012 .

[30]  J. Alonso,et al.  Optimized energy conversion efficiency in solid-oxide fuel cells implementing SrMo1−xFexO3−δ perovskites as anodes , 2012 .

[31]  Meilin Liu,et al.  From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives , 2011, Energy & Environmental Science.

[32]  F. Chen,et al.  A Novel Electrode Material for Symmetrical SOFCs , 2010, Advanced materials.

[33]  Ellen Ivers-Tiffée,et al.  Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells. , 2010, Physical chemistry chemical physics : PCCP.

[34]  V. Birss,et al.  A possible solution to the mechanical degradation of Ni–yttria stabilized zirconia anode-supported solid oxide fuel cells due to redox cycling , 2010 .

[35]  J. Van herle,et al.  Nickel–Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis , 2009 .

[36]  Marco Cannarozzo,et al.  Experimental and Theoretical Investigation of Degradation Mechanisms by Particle Coarsening in SOFC Electrodes , 2009 .

[37]  Yunhui Huang,et al.  Double-Perovskite Anode Materials Sr2MMoO6 (M = Co, Ni) for Solid Oxide Fuel Cells , 2009 .

[38]  Meilin Liu,et al.  Surface regeneration of sulfur-poisoned Ni surfaces under SOFC operation conditions predicted by first-principles-based thermodynamic calculations , 2008 .

[39]  Meilin Liu,et al.  Sulfur Poisoning and Regeneration of Ni-Based Anodes in Solid Oxide Fuel Cells , 2007 .

[40]  K. Sasaki,et al.  H2S Poisoning of Solid Oxide Fuel Cells , 2006 .

[41]  J. Brouwer,et al.  Fuel flexibility study of an integrated 25 kW SOFC reformer system , 2005 .

[42]  Y. Matsuzaki,et al.  The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I , 2000 .

[43]  S. Jiang,et al.  An electrode kinetics study of H2 oxidation on Ni/Y2O3–ZrO2 cermet electrode of the solid oxide fuel cell , 1999 .

[44]  Jack Winnick,et al.  Sulfation of the Molten Carbonate Fuel Cell Anode , 1989 .

[45]  Panpan Zhang,et al.  Direct power generation from ethanol by solid oxide fuel cells with an integrated catalyst layer , 2023, Fuel.

[46]  M. P. Yeste,et al.  Ni-Ce-ZrO2 system as anode material for direct internal reforming biogas solid oxide fuel cells , 2022, Fuel.

[47]  A. Nemudry,et al.  Study of the isobaric and isostoichiometric kinetic parameters of oxygen exchange reaction of SrFe0.98Mo0.02O3- MIEC perovskite , 2022, Chemical Engineering Journal.

[48]  Tong Liu,et al.  Understanding the A-site non-stoichiometry in perovskites: promotion of exsolution of metallic nanoparticles and the hydrogen oxidation reaction in solid oxide fuel cells , 2020 .

[49]  Zongping Shao,et al.  A New Sodium-ion-conducting Layered Perovskite Oxide as Highly Active and Sulfur Tolerant Electrocatalyst for Solid Oxide Fuel Cells , 2019, Energy Procedia.

[50]  A. Aricò,et al.  Solid oxide fuel cells fed with dry ethanol: The effect of a perovskite protective anodic layer containing dispersed Ni-alloy @ FeOx core-shell nanoparticles , 2018 .

[51]  P. Larsen,et al.  Sr-Doped LaCrO3 Anode for Solid Oxide Fuel Cells , 2001 .

[52]  Xin Lv,et al.  ReaxFF reactive molecular dynamics study on electrochemistry of H2/CO hybrid fuel in Ni/YSZ anode , 2022, Fuel.