Sensate Media — Multimodal Electronic Skins as Dense Sensor Networks

In this paper, we introduce the concept of building electronic sensate skins as extremely dense, multimodal, systolic sensor networks. In this fashion, the copious signals produced by the skin's receptors are reduced by the network itself, and only high-level features are routed out peer-to-peer, avoiding complex wiring requirements while promising to enable scalability across large areas. Our architectures and algorithms have been inspired by biological skin, where signals from receptors are enhanced or suppressed by processing in the receptor cells and nervous system before arriving at the brain. We illustrate this concept with work in progress on two test beds, the Pushpin Computer, an easily configurable, planar array of over 100 nodes set up as 'smart wallpaper', and the Tribble, a sphere coated with over 500 diverse tactile and noncontact sensor channels processed in 32 interconnected sensor 'cells'. We also introduce the Z-Tiles, a collaborative project that has resulted in a pressure-imaging floor realised through a collection of pixilated floor tiles configured as a mesh sensor network. We conclude with a technology roadmap for scaling to higher densities.

[1]  Rahul Sarpeshkar,et al.  Analog Versus Digital: Extrapolating from Electronics to Neurobiology , 1998, Neural Computation.

[2]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[3]  Martin Brooks,et al.  Highly Redundant Sensing in Robotics — Analogies From Biology: Distributed Sensing and Learning , 1990 .

[4]  Sid Deutsch,et al.  Understanding the nervous system : an engineering perspective , 1993 .

[5]  Graham P Collins,et al.  Next stretch for plastic electronics. , 2004, Scientific American.

[6]  Seppo Pohja,et al.  Survey of Studies on Tactile Senses , 2001 .

[7]  T. Someya Integration of organic field-effect transistors and rubbery pressure sensors for artificial skin applications , 2003, IEEE International Electron Devices Meeting 2003.

[8]  Kannan Ramchandran,et al.  Distributed compression in a dense microsensor network , 2002, IEEE Signal Process. Mag..

[9]  D. De Rossi,et al.  Electroactive fabrics for distributed, conformable and interactive systems , 2002, Proceedings of IEEE Sensors.

[10]  Sergio D. Servetto,et al.  Algorithmic Aspects of the Time Synchronization Problem in Large-Scale Sensor Networks , 2005, Mob. Networks Appl..

[11]  Darren Leigh,et al.  DiamondTouch: a multi-user touch technology , 2001, UIST '01.

[12]  Joseph A. Paradiso,et al.  'ForSe FIElds' - Force Sensors for Interactive Environments , 2002, UbiComp.

[13]  Perry R. Cook,et al.  Alternative Voices for Electronic Sound: Spherical Speakers and Sensor-Speaker Arrays (SenSAs) , 2000, ICMC.

[14]  Mark Lee,et al.  Review Article Tactile sensing for mechatronics—a state of the art survey , 1999 .

[15]  Hiroyuki Shinoda,et al.  A Sensitive Skin Using Wireless Tactile Sensing Elements , 2001 .

[16]  Robert D. Howe,et al.  A tactile sensor for localizing transient events in manipulation , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[17]  Jerome P. Lynch,et al.  Two-tiered wireless sensor network architecture for structural health monitoring , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Ming Qin,et al.  Weather station on a chip , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[19]  Leonidas J. Guibas,et al.  Lightweight sensing and communication protocols for target enumeration and aggregation , 2003, MobiHoc '03.

[20]  Tad Hogg,et al.  Controlling smart matter , 1996, cond-mat/9611024.

[21]  Hamid Gharavi,et al.  Special issue on sensor networks and applications , 2003 .

[22]  T. Barrette,et al.  Calcitic microlenses as part of the photoreceptor system in brittlestars , 2022 .

[23]  Deborah Estrin,et al.  Coherent acoustic array processing and localization on wireless sensor networks , 2003, Proc. IEEE.

[24]  Ridley,et al.  All-Inorganic Field Effect Transistors Fabricated by Printing. , 1999, Science.

[25]  Roger T. Howe,et al.  Integration of organic field-effect transistors and rubbery pressure sensors for artificial skin applications , 2003 .

[26]  H. Bleckmann,et al.  Hydrodynamic Trail-Following in Harbor Seals (Phoca vitulina) , 2001, Science.

[27]  Radhika Nagpal,et al.  Organizing a Global Coordinate System from Local Information on an Ad Hoc Sensor Network , 2003, IPSN.

[28]  Mikhail Prokopenko,et al.  Self-Reconflgurable Sensor Networks in Ageless Aerospace Vehicles , 2003 .

[29]  J. Engel,et al.  Development of a multi-modal, flexible tactile sensing skin using polymer micromachining , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[30]  James Scott,et al.  Audio Location: Accurate Low-Cost Location Sensing , 2005, Pervasive.

[31]  J. Lima,et al.  A large area force sensor for smart skin applications , 2002, Proceedings of IEEE Sensors.

[32]  Roger W. Cholewiak,et al.  Sensory and Physiological Bases of Touch , 1991 .

[33]  Stephen Mihm Print your next PC , 2000 .

[34]  Kynan Eng Designing neuromorphic interactive spaces , 2004 .

[35]  Vladimir J. Lumelsky,et al.  A modularized sensitive skin for motion planning in uncertain environments , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[36]  Curtis Roads,et al.  The Computer Music Tutorial , 1996 .

[37]  M. Shimojo,et al.  A system for simultaneously measuring grasping posture and pressure distribution , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[38]  Joseph A. Paradiso,et al.  Distributed sensor networks as sensate skin , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[39]  V. Lumelsky,et al.  Sensitive skin , 2000, IEEE Sensors Journal.

[40]  Joseph A. Paradiso,et al.  Localizing a sensor network via collaborative processing of global stimuli , 2005, Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005..

[41]  J. Chen,et al.  Development of polymer-based artificial haircell using surface micromachining and 3D assembly , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[42]  Russell F. Pinkston,et al.  A Touch Sensitive Dance Floor/MIDI Controller , 1995, ICMC.

[43]  Joseph A. Paradiso,et al.  Pushpin Computing System Overview: A Platform for Distributed, Embedded, Ubiquitous Sensor Networks , 2002, Pervasive.

[44]  Mikael Fernström,et al.  LiteFoot - A Floor Space for Recording Dance and Controlling Media , 1998, ICMC.

[45]  Jun Rekimoto,et al.  SmartSkin: an infrastructure for freehand manipulation on interactive surfaces , 2002, CHI.

[46]  V. Michael Bove,et al.  Programming a paintable computer , 2002 .

[47]  ウェスターマン,ウェイン,et al.  Method and apparatus for integrating manual input , 1999 .

[48]  Robert D. Howe,et al.  Tactile sensing and control of robotic manipulation , 1993, Adv. Robotics.

[49]  M. Dijkstra,et al.  Fabrication of arrays of artificial hairs for complex flow pattern recognition , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[50]  Yoji Umetani,et al.  Identification of Incipient Slip Phenomena Based on The Circuit Output Signals of PVDF Film Strips E , 2004 .

[51]  Neil Gershenfeld,et al.  An installation of interactive furniture , 2000, IBM Syst. J..

[52]  Jukka Riekki,et al.  Reject-Optional LVQ-Based Two-Level Classifier to Improve Reliability in Footstep Identification , 2004, Pervasive.

[53]  Joseph A. Paradiso,et al.  Sensor systems for interactive surfaces , 2000, IBM Syst. J..

[54]  Chris Hanson,et al.  Amorphous computing , 2000, Commun. ACM.

[55]  Michael S. Shur,et al.  SPECIAL ISSUE ON SENSITIVE SKIN , 2000 .

[56]  Nathan Ickes,et al.  Energy-centric enabling tecumologies for wireless sensor networks , 2002, IEEE Wireless Communications.

[57]  Joseph A. Paradiso,et al.  Z-Tiles: building blocks for modular, pressure-sensing floorspaces , 2004, CHI EA '04.

[58]  C. Moore Frequency-dependent processing in the vibrissa sensory system. , 2004, Journal of neurophysiology.

[59]  Joshua Harlan Lifton Pushpin computing : a platform for distributed sensor networks , 2002 .

[60]  Naoki Kawakami,et al.  Vision-based sensor for real-time measuring of surface traction fields , 2005, IEEE Computer Graphics and Applications.

[61]  Hiroyuki Shinoda,et al.  A sensor skin using wire-free tactile sensing elements based on optical connection , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[62]  Anna Scaglione,et al.  On the Interdependence of Routing and Data Compression in Multi-Hop Sensor Networks , 2002, MobiCom '02.

[63]  R. Johansson,et al.  Tactile sensory coding in the glabrous skin of the human hand , 1983, Trends in Neurosciences.

[64]  Yong Xu,et al.  IC-integrated flexible shear-stress sensor skin , 2003 .

[65]  Kenneth C. Smith,et al.  A multi-touch three dimensional touch-sensitive tablet , 1985, CHI '85.

[66]  Andrew Lippman,et al.  Natural Spontaneous Order in Wireless Sensor Networks: Time Synchronization Based on Entrainment , 2003 .

[67]  Roger W. Brockett,et al.  The performance of a deformable-membrane tactile sensor: basic results on geometrically-defined tasks , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).