The shape of ears to come: dynamic coding of auditory space

[1]  R L Jenison,et al.  Listening through different ears alters spatial response fields in ferret primary auditory cortex. , 2001, Journal of neurophysiology.

[2]  A. King,et al.  Topographical projection from the superior colliculus to the nucleus of the brachium of the inferior colliculus in the ferret: convergence of visual and auditory information , 2000, The European journal of neuroscience.

[3]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E D Young,et al.  Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A J King,et al.  Plasticity in the neural coding of auditory space in the mammalian brain. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  B. May Role of the dorsal cochlear nucleus in the sound localization behavior of cats , 2000, Hearing Research.

[7]  R. Meuli,et al.  Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways , 2000, Neuropsychologia.

[8]  E I Knudsen,et al.  Topographic projection from the optic tectum to the auditory space map in the inferior colliculus of the barn owl , 2000, The Journal of comparative neurology.

[9]  G H Recanzone,et al.  Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. , 2000, Journal of neurophysiology.

[10]  Harald Luksch,et al.  A Candidate Pathway for a Visual Instructional Signal to the Barn Owl's Auditory System , 2000, The Journal of Neuroscience.

[11]  J. C. Middlebrooks,et al.  Individual differences in external-ear transfer functions of cats. , 2000, The Journal of the Acoustical Society of America.

[12]  A Rees,et al.  Human brain areas involved in the analysis of auditory movement , 2000, Human brain mapping.

[13]  J. C. Middlebrooks,et al.  Coding of Sound-Source Location by Ensembles of Cortical Neurons , 2000, The Journal of Neuroscience.

[14]  J I Gold,et al.  Abnormal Auditory Experience Induces Frequency-Specific Adjustments in Unit Tuning for Binaural Localization Cues in the Optic Tectum of Juvenile Owls , 2000, The Journal of Neuroscience.

[15]  R L Jenison,et al.  Correlated cortical populations can enhance sound localization performance. , 2000, The Journal of the Acoustical Society of America.

[16]  A J King,et al.  Sensory experience and the formation of a computational map of auditory space in the brain. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[17]  E. Knudsen,et al.  Mechanisms of experience-dependent plasticity in the auditory localization pathway of the barn owl , 1999, Journal of Comparative Physiology A.

[18]  J. C. Middlebrooks Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. , 1999, The Journal of the Acoustical Society of America.

[19]  J. C. Middlebrooks,et al.  Individual differences in external-ear transfer functions reduced by scaling in frequency. , 1999, The Journal of the Acoustical Society of America.

[20]  W. M. Rabinowitz,et al.  Auditory localization of nearby sources. Head-related transfer functions. , 1999, The Journal of the Acoustical Society of America.

[21]  J. Rauschecker,et al.  Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans , 1999, Nature Neuroscience.

[22]  Shigeto Furukawa,et al.  Auditory cortical responses in the cat to sounds that produce spatial illusions , 1999, Nature.

[23]  B. Delgutte,et al.  Receptive fields and binaural interactions for virtual-space stimuli in the cat inferior colliculus. , 1999, Journal of neurophysiology.

[24]  E. Knudsen,et al.  Functional selection of adaptive auditory space map by GABAA-mediated inhibition. , 1999, Science.

[25]  J. Rauschecker,et al.  A PET study of human auditory spatial processing , 1999, Neuroscience Letters.

[26]  Tammo Houtgast,et al.  Auditory distance perception in rooms , 1999, Nature.

[27]  C. Gross,et al.  A neuronal representation of the location of nearby sounds , 1999, Nature.

[28]  J. Brugge,et al.  Central Auditory Processing and Neural Modeling , 2012, Springer US.

[29]  H. Steven Colburn,et al.  Role of spectral detail in sound-source localization , 1998, Nature.

[30]  M. W. Spitzer,et al.  Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. , 1998, Journal of neurophysiology.

[31]  Andrew J. King,et al.  Signals from the Superficial Layers of the Superior Colliculus Enable the Development of the Auditory Space Map in the Deeper Layers , 1998, The Journal of Neuroscience.

[32]  Paul M. Hofman,et al.  Relearning sound localization with new ears , 1998, Nature Neuroscience.

[33]  J. C. Middlebrooks,et al.  Codes for sound-source location in nontonotopic auditory cortex. , 1998, Journal of neurophysiology.

[34]  N I Durlach,et al.  Adapting to supernormal auditory localization cues. I. Bias and resolution. , 1998, The Journal of the Acoustical Society of America.

[35]  E. Knudsen,et al.  Sensitive Periods for Visual Calibration of the Auditory Space Map in the Barn Owl Optic Tectum , 1998, The Journal of Neuroscience.

[36]  T. Park IID sensitivity differs between two principal centers in the interaural intensity difference pathway: the LSO and the IC. , 1998, Journal of neurophysiology.

[37]  Klaus Hartung,et al.  Head-related transfer functions of the barn owl: measurement and neural responses , 1998, Hearing Research.

[38]  E I Knudsen,et al.  Capacity for plasticity in the adult owl auditory system expanded by juvenile experience. , 1998, Science.

[39]  J. Eggermont Is There a Neural Code? , 1998, Neuroscience & Biobehavioral Reviews.

[40]  Alan R. Palmer,et al.  Psychophysical and Physiological Advances in Hearing , 1998 .

[41]  Rick L. Jenison,et al.  MODELS OF DIRECTION ESTIMATION WITH SPHERICAL-FUNCTION APPROXIMATED CORTICAL RECEPTIVE FIELDS , 1998 .

[42]  D. Feldman,et al.  An Anatomical Basis for Visual Calibration of the Auditory Space Map in the Barn Owl’s Midbrain , 1997, The Journal of Neuroscience.

[43]  Terrence R. Stanford,et al.  A neuronal population code for sound localization , 1997, Nature.

[44]  J. Hirsch,et al.  Distinct cortical areas associated with native and second languages , 1997, Nature.

[45]  F L Wightman,et al.  Monaural sound localization revisited. , 1997, The Journal of the Acoustical Society of America.

[46]  R. Bruce Masterton,et al.  Role of the Mammalian Forebrain in Hearing , 1997 .

[47]  K. Hartung,et al.  Generation of Virtual Sound Sources for Electrophysiological Characterization of Auditory Spatial Tuning in the Guinea Pig , 1997 .

[48]  I Nelken,et al.  Responses of field AES neurons to virtual space stimuli , 1997 .

[49]  Josef Syka,et al.  Acoustical Signal Processing in the Central Auditory System , 1997, Springer US.

[50]  John F. Brugge,et al.  The Structure of Spatial Receptive Fields of Neurons in Primary Auditory Cortex of the Cat , 1996, The Journal of Neuroscience.

[51]  W M Hartmann,et al.  On the externalization of sound images. , 1996, The Journal of the Acoustical Society of America.

[52]  J. Rauschecker Compensatory plasticity and sensory substitution in the cerebral cortex , 1995, Trends in Neurosciences.

[53]  John C. Middlebrooks,et al.  Monaural sound localization: Acute versus chronic unilateral impairment , 1994, Hearing Research.

[54]  A J King,et al.  Monaural and binaural spectrum level cues in the ferret: acoustics and the neural representation of auditory space. , 1994, Journal of neurophysiology.

[55]  Barbara G. Shinn-Cunningham,et al.  Adaptation to supernormal auditory localization cues in an auditory virtual environment , 1994 .

[56]  E. Knudsen,et al.  Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  F L Wightman,et al.  Localization using nonindividualized head-related transfer functions. , 1993, The Journal of the Acoustical Society of America.

[58]  B. Stein,et al.  The Merging of the Senses , 1993 .

[59]  F. Wightman,et al.  The dominant role of low-frequency interaural time differences in sound localization. , 1992, The Journal of the Acoustical Society of America.

[60]  F. Wightman,et al.  A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction. , 1992, The Journal of the Acoustical Society of America.

[61]  D. Irvine Physiology of the Auditory Brainstem , 1992 .

[62]  M. Ahissar,et al.  Encoding of sound-source location and movement: activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. , 1992, Journal of neurophysiology.

[63]  Richard R. Fay,et al.  The Mammalian Auditory Pathway: Neurophysiology , 1992, Springer Handbook of Auditory Research.

[64]  L. Aitkin,et al.  Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters. , 1990, Journal of neurophysiology.

[65]  H. Heffner,et al.  Effect of bilateral auditory cortex lesions on sound localization in Japanese macaques. , 1990, Journal of neurophysiology.

[66]  T. Imig,et al.  Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. , 1990, Journal of neurophysiology.

[67]  J. E. Hind,et al.  Direction-dependent spectral properties of cat external ear: new data and cross-species comparisons. , 1990, The Journal of the Acoustical Society of America.

[68]  D. M. Green,et al.  Directional sensitivity of sound-pressure levels in the human ear canal. , 1989, The Journal of the Acoustical Society of America.

[69]  F L Wightman,et al.  Headphone simulation of free-field listening. II: Psychophysical validation. , 1989, The Journal of the Acoustical Society of America.

[70]  C. Blakemore,et al.  Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus , 1988, Nature.

[71]  A J King,et al.  Spatial response properties of acoustically responsive neurons in the superior colliculus of the ferret: a map of auditory space. , 1987, Journal of neurophysiology.

[72]  Robert A. Butler,et al.  The bandwidth effect on monaural and binaural localization , 1986, Hearing Research.

[73]  M. Merzenich,et al.  Role of cat primary auditory cortex for sound-localization behavior. , 1984, Journal of neurophysiology.

[74]  J. C. Middlebrooks,et al.  A neural code for auditory space in the cat's superior colliculus , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  David L. Sparks,et al.  Auditory receptive fields in primate superior colliculus shift with changes in eye position , 1984, Nature.

[76]  R. Häusler,et al.  Sound localization in subjects with impaired hearing. Spatial-discrimination and interaural-discrimination tests. , 1983, Acta oto-laryngologica. Supplementum.

[77]  E. Knudsen Auditory and visual maps of space in the optic tectum of the owl , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  E. Shaw,et al.  Sound pressure generated in an external-ear replica and real human ears by a nearby point source. , 1968, The Journal of the Acoustical Society of America.