AmberTools

AmberTools is a free and open-source collection of programs used to set up, run, and analyze molecular simulations. The newer features contained within AmberTools23 are briefly described in this Application note.

[1]  R. Luo,et al.  Streamlining and Optimizing Strategies of Electrostatic Parameterization. , 2023, Journal of chemical theory and computation.

[2]  Y. Duan,et al.  Optimal Scheme to Achieve Energy Conservation in Induced Dipole Models. , 2023, Journal of chemical theory and computation.

[3]  S. Pantano,et al.  The SIRAH force field: a suite for simulations of complex biological systems at the coarse-grained and multiscale levels. , 2023, Journal of structural biology.

[4]  Russell B. Davidson,et al.  tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking , 2023, J. Chem. Inf. Model..

[5]  H. Aktulga,et al.  Quantum Mechanics/Molecular Mechanics Simulations on NVIDIA and AMD Graphics Processing Units , 2023, J. Chem. Inf. Model..

[6]  Y. Duan,et al.  Transferability of the Electrostatic Parameters of the Polarizable Gaussian Multipole Model. , 2023, Journal of chemical theory and computation.

[7]  D. York,et al.  ACES: Optimized Alchemically Enhanced Sampling. , 2023, Journal of chemical theory and computation.

[8]  Timothy J. Giese,et al.  AMBER Free Energy Tools: A New Framework for the Design of Optimized Alchemical Transformation Pathways. , 2023, Journal of chemical theory and computation.

[9]  Timothy J. Giese,et al.  AMBER Drug Discovery Boost Tools: Automated Workflow for Production Free-Energy Simulation Setup and Analysis (ProFESSA) , 2022, J. Chem. Inf. Model..

[10]  Timothy J. Giese,et al.  Multireference Generalization of the Weighted Thermodynamic Perturbation Method. , 2022, The journal of physical chemistry. A.

[11]  Y. Duan,et al.  Accurate Reproduction of Quantum Mechanical Many-Body Interactions in Peptide Main-Chain Hydrogen-Bonding Oligomers by the Polarizable Gaussian Multipole Model. , 2022, Journal of chemical theory and computation.

[12]  R. Krasny,et al.  Accelerating the 3D reference interaction site model theory of molecular solvation with treecode summation and cut‐offs , 2022, J. Comput. Chem..

[13]  Y. Duan,et al.  PyRESP: A Program for Electrostatic Parameterizations of Additive and Induced Dipole Polarizable Force Fields. , 2022, Journal of chemical theory and computation.

[14]  Y. Duan,et al.  Stress tensor and constant pressure simulation for polarizable Gaussian multipole model. , 2022, The Journal of chemical physics.

[15]  Callum J. Dickson,et al.  Lipid21: Complex Lipid Membrane Simulations with AMBER , 2022, Journal of chemical theory and computation.

[16]  D. Case,et al.  Integral equation models for solvent in macromolecular crystals , 2021, The Journal of chemical physics.

[17]  R. Luo,et al.  Machine-Learned Molecular Surface and Its Application to Implicit Solvent Simulations. , 2021, Journal of chemical theory and computation.

[18]  D. York,et al.  Extension of the Variational Free Energy Profile and Multistate Bennett Acceptance Ratio Methods for High-Dimensional Potential of Mean Force Profile Analysis. , 2021, The journal of physical chemistry. A.

[19]  R. Luo,et al.  Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations. , 2021, Journal of chemical theory and computation.

[20]  Andreas W. Götz,et al.  Open-Source Multi-GPU-Accelerated QM/MM Simulations with AMBER and QUICK , 2021, J. Chem. Inf. Model..

[21]  H. Aktulga,et al.  Harnessing the Power of Multi-GPU Acceleration into the Quantum Interaction Computational Kernel Program. , 2021, Journal of chemical theory and computation.

[22]  D. York,et al.  Variational Method for Networkwide Analysis of Relative Ligand Binding Free Energies with Loop Closure and Experimental Constraints. , 2021, Journal of chemical theory and computation.

[23]  Richard North,et al.  Andreas , 2020, The Longman Anthology of Old English, Old Icelandic and Anglo-Norman Literatures.

[24]  Lin Frank Song,et al.  Evolution of Alchemical Free Energy Methods in Drug Discovery , 2020, J. Chem. Inf. Model..

[25]  Y. Duan,et al.  Efficient formulation of polarizable Gaussian multipole electrostatics for biomolecular simulations. , 2020, The Journal of chemical physics.

[26]  L. Watson,et al.  Multidimensional Global Optimization and Robustness Analysis in the Context of Protein-Ligand Binding. , 2020, Journal of chemical theory and computation.

[27]  Per Larsson,et al.  MkVsites: A tool for creating GROMACS virtual sites parameters to increase performance in all‐atom molecular dynamics simulations , 2020, J. Comput. Chem..

[28]  K. Merz,et al.  Parallel Implementation of Density Functional Theory Methods in the Quantum Interaction Computational Kernel Program. , 2020, Journal of chemical theory and computation.

[29]  Timothy J. Giese,et al.  Confluence of Theory and Experiment Reveal the Catalytic Mechanism of the Varkud Satellite Ribozyme , 2019, Nature Chemistry.

[30]  Timothy J. Giese,et al.  Development of a Robust Indirect Approach for MM→QM Free Energy Calculations that Combines Force-matched Reference Potential and Bennett's Acceptance Ratio Methods. , 2019, Journal of chemical theory and computation.

[31]  Junmei Wang,et al.  End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. , 2019, Chemical reviews.

[32]  He Huang,et al.  ff19SB: Amino-acid specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. , 2019, Journal of chemical theory and computation.

[33]  Holger Gohlke,et al.  PACKMOL-Memgen: A Simple-To-Use, Generalized Workflow for Membrane-Protein-Lipid-Bilayer System Building , 2019, J. Chem. Inf. Model..

[34]  Timothy J. Giese,et al.  Cleaning Up Mechanistic Debris Generated by Twister Ribozymes Using Computational RNA Enzymology. , 2019, ACS catalysis.

[35]  Ray Luo,et al.  An efficient second‐order poisson–boltzmann method , 2019, J. Comput. Chem..

[36]  Y. Duan,et al.  Development of Polarizable Gaussian Model for Molecular Mechanical Calculations I: Atomic Polarizability Parameterization To Reproduce ab Initio Anisotropy. , 2019, Journal of chemical theory and computation.

[37]  Ray Luo,et al.  Robustness and Efficiency of Poisson-Boltzmann Modeling on Graphics Processing Units. , 2018, Journal of chemical information and modeling.

[38]  Ye Mei,et al.  Accelerated Computation of Free Energy Profile at ab Initio Quantum Mechanical/Molecular Mechanics Accuracy via a Semi-Empirical Reference Potential. I. Weighted Thermodynamics Perturbation. , 2018, Journal of chemical theory and computation.

[39]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[40]  A. Onufriev,et al.  Grid-Based Surface Generalized Born Model for Calculation of Electrostatic Binding Free Energies , 2017, J. Chem. Inf. Model..

[41]  B. Brooks,et al.  Efficient Strategy for the Calculation of Solvation Free Energies in Water and Chloroform at the Quantum Mechanical/Molecular Mechanical Level , 2017, J. Chem. Inf. Model..

[42]  Ray Luo,et al.  Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units. , 2017, Journal of chemical theory and computation.

[43]  Timothy J. Giese,et al.  Ambient-Potential Composite Ewald Method for ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation. , 2016, Journal of chemical theory and computation.

[44]  C. Bannwarth,et al.  Dispersion-Corrected Mean-Field Electronic Structure Methods. , 2016, Chemical reviews.

[45]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[46]  R. Walker,et al.  An extensible interface for QM/MM molecular dynamics simulations with AMBER , 2014, J. Comput. Chem..

[47]  Tai-Sung Lee,et al.  Roadmaps through free energy landscapes calculated using the multi-dimensional vFEP approach. , 2014, Journal of chemical theory and computation.

[48]  D. Case,et al.  Twenty-five years of nucleic acid simulations. , 2013, Biopolymers.

[49]  Holger Gohlke,et al.  FEW: A workflow tool for free energy calculations of ligand binding , 2013, J. Comput. Chem..

[50]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[51]  Tai-Sung Lee,et al.  A New Maximum Likelihood Approach for Free Energy Profile Construction from Molecular Simulations. , 2013, Journal of chemical theory and computation.

[52]  Holger Gohlke,et al.  MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. , 2012, Journal of chemical theory and computation.

[53]  R. Luo,et al.  Reducing grid-dependence in finite-difference Poisson-Boltzmann calculations. , 2012, Journal of chemical theory and computation.

[54]  Mehmet Gonullu,et al.  Department of Computer Science and Engineering , 2011 .

[55]  Ray Luo,et al.  Assessment of linear finite‐difference Poisson–Boltzmann solvers , 2010, J. Comput. Chem..

[56]  Carlos Simmerling,et al.  Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber. , 2010, Journal of chemical theory and computation.

[57]  Ray Luo,et al.  Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers. , 2010, Journal of chemical theory and computation.

[58]  Austin B. Yongye,et al.  Extension of the GLYCAM06 biomolecular force field to lipids, lipid bilayers and glycolipids , 2008, Molecular simulation.

[59]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[60]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[61]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[62]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[63]  Fumio Hirata,et al.  A molecular theory of liquid interfaces. , 2005, Physical chemistry chemical physics : PCCP.

[64]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[65]  D. Case,et al.  Exploring protein native states and large‐scale conformational changes with a modified generalized born model , 2004, Proteins.

[66]  Ray Luo,et al.  Accelerated Poisson–Boltzmann calculations for static and dynamic systems , 2002, J. Comput. Chem..

[67]  D. Case,et al.  Modification of the Generalized Born Model Suitable for Macromolecules , 2000 .

[68]  Ghazi Rabihavi David , 1997 .

[69]  Gregory D. Hawkins,et al.  Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium , 1996 .

[70]  P. Kollman,et al.  A second generation force field for the simulation of proteins , 1995 .

[71]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[72]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[73]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[74]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[75]  C. Smith,et al.  Adrian. , 1983, British medical journal.

[76]  Peter A. Kollman,et al.  AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions , 1981 .

[77]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[78]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[79]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[80]  J Andrew McCammon,et al.  Generalized Born model with a simple, robust molecular volume correction. , 2007, Journal of chemical theory and computation.

[81]  Machine-Learned Molecular Surface and Its Application to Implicit Solvent Simulations , 2022 .