Examination of load-balancing methods to improve efficiency of a composite materials manufacturing process simulation under uncertainty using distributed computing

Process simulations play an important role in guiding process understanding and development, without requiring costly manufacturing trials. For process design under uncertainty, a large number of simulations is needed for an accurate convergence of the moments of the output distributions, which renders such stochastic analysis computationally intensive. This paper discusses the application of a basic distributed computing approach to reduce the computation time of a composite materials manufacturing process simulation under uncertainty. Specifically, several load-balancing methods are explored and analyzed to determine the best strategies given heterogeneous tasks and heterogeneous networks, especially when the individual task times cannot be predicted.

[1]  Sivarama P. Dandamudi,et al.  A Comparative Study of Load Sharing on Networks of Workstations , 1997 .

[2]  Stephen A. Jarvis,et al.  Grid load balancing using intelligent agents , 2005, Future Gener. Comput. Syst..

[3]  Ronald L. Iman,et al.  A FORTRAN-77 PROGRAM AND USER'S GUIDE FOR THE GENERATION OF LATIN HYPERCUBE AND RANDOM SAMPLES FOR USE WITH COMPUTER MODELS , 1984 .

[4]  Ian T. Foster,et al.  The Anatomy of the Grid: Enabling Scalable Virtual Organizations , 2001, Int. J. High Perform. Comput. Appl..

[5]  John G. Vaughan,et al.  Experimental evaluation of distributed load balancing implementations , 1998 .

[6]  Chuliang Weng,et al.  Heuristic scheduling for bag-of-tasks applications in combination with QoS in the computational grid , 2005, Future Gener. Comput. Syst..

[7]  Ranga Pitchumani,et al.  Cure Cycle Design for Thermosetting-Matrix Composites Fabrication under Uncertainty , 2004, Ann. Oper. Res..

[8]  Ranga Pitchumani,et al.  Stochastic modeling of nonisothermal flow during resin transfer molding , 1999 .

[9]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[10]  Edward D. Lazowska,et al.  A Comparison of Receiver-Initiated and Sender-Initiated Adaptive Load Sharing , 1986, Perform. Evaluation.

[11]  Larry Carter,et al.  Scheduling strategies for master-slave tasking on heterogeneous processor platforms , 2004, IEEE Transactions on Parallel and Distributed Systems.

[12]  Guy Bernard,et al.  A survey of load sharing in networks of workstations , 1993, Distributed Syst. Eng..

[13]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[14]  Mukesh Singhal,et al.  Load distributing for locally distributed systems , 1992, Computer.

[15]  Ian T. Foster,et al.  The Globus project: a status report , 1999, Future Gener. Comput. Syst..

[16]  Samuel T. Chanson,et al.  Hydrodynamic Load Balancing , 1999, IEEE Trans. Parallel Distributed Syst..

[17]  Ranga Pitchumani,et al.  Stochastic analysis of isothermal cure of resin systems , 1999 .

[18]  Bertil Schmidt,et al.  An adaptive grid implementation of DNA sequence alignment , 2005, Future Gener. Comput. Syst..

[19]  Andryas Mawardi Strategies for optimal design and manufacturing of advanced materials under uncertainty , 2002 .

[20]  Jeff Kramer,et al.  Methodical Analysis of Adaptive Load Sharing Algorithms , 1992, IEEE Trans. Parallel Distributed Syst..

[21]  D. B. Spalding,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[22]  E. Bender Numerical heat transfer and fluid flow. Von S. V. Patankar. Hemisphere Publishing Corporation, Washington – New York – London. McGraw Hill Book Company, New York 1980. 1. Aufl., 197 S., 76 Abb., geb., DM 71,90 , 1981 .

[23]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[24]  Luke E. K. Achenie,et al.  Optimization of Chemical Processes Under Uncertainty , 1999, System Modelling and Optimization.

[25]  Karim Y. Kabalan,et al.  ADAPTIVE LOAD SHARING IN HETERGENEOUS SYSTEMS: POLICIES, MODIFICATIONS, AND SIMULATION , 2002 .

[26]  José A. B. Fortes,et al.  PUNCH: An architecture for Web-enabled wide-area network-computing , 2004, Cluster Computing.

[27]  Hitoshi Ueno,et al.  A dynamic load balancing method based on network delay for large distributed systems , 2001 .

[28]  H. B. Chin,et al.  Development of a mathematical model for the pultrusion process , 1986 .

[29]  John F. Karpovich,et al.  The Legion Resource Management System , 1999, JSSPP.

[30]  Cauligi S. Raghavendra,et al.  A Dynamic Load-Balancing Policy With a Central Job Dispatcher (LBC) , 1992, IEEE Trans. Software Eng..

[31]  Mor Harchol-Balter,et al.  Evaluation of Task Assignment Policies for Supercomputing Servers: The Case for Load Unbalancing and Fairness , 2004, Cluster Computing.

[32]  Berç Rustem,et al.  Decreasing the sensitivity of open-loop optimal solutions in decision making under uncertainty , 2000, Eur. J. Oper. Res..