A 55-65 GHz Internal Differentially Matched Silicon Power Amplifier With Spirally Folded 1:2 Balun

A 55–65-GHz CMOS high power amplifier (PA) is designed with the help of a spirally folded 1:2 balun. By this size-folded balun, balance–unbalanced conversion and high-power combination are accomplished concurrently. Within the internal of PA, differential signal pairs benefit simplification of inter-stage matching topologies. The designed three-stage PA offers above 16.3-dB gain from 55.1 to 65.0 GHz. It is able to deliver 17.8-dBm output referred 1-dB compression point (<inline-formula> <tex-math notation="LaTeX">$P_{1~\text {dB}}$ </tex-math></inline-formula>) and 22.2-dBm saturated output power (<inline-formula> <tex-math notation="LaTeX">$P_{\text {sat}}$ </tex-math></inline-formula>) with a peak power-added efficiency of 10.9%.

[1]  Huei Wang,et al.  Millimeter-Wave CMOS Power Amplifiers With High Output Power and Wideband Performances , 2013, IEEE Transactions on Microwave Theory and Techniques.

[2]  Jiashu Chen,et al.  Design of CMOS Power Amplifiers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[3]  C. Jou,et al.  77–110 GHz 65-nm CMOS Power Amplifier Design , 2014, IEEE Transactions on Terahertz Science and Technology.

[4]  Kenjiro Nishikawa,et al.  Compact and broad-band three-dimensional MMIC balun , 1999 .

[5]  Jeng-Han Tsai,et al.  Design and Analysis of a 55–71-GHz Compact and Broadband Distributed Active Transformer Power Amplifier in 90-nm CMOS Process , 2009, IEEE Transactions on Microwave Theory and Techniques.

[6]  R. Plana,et al.  High-Gain and Linear 60-GHz Power Amplifier With a Thin Digital 65-nm CMOS Technology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[7]  Thomas Quemerais,et al.  Design-in-Reliable Millimeter-Wave Power Amplifiers in a 65-nm CMOS Process , 2012, IEEE Transactions on Microwave Theory and Techniques.

[8]  Rui P Martins,et al.  High-/Mixed-Voltage RF and Analog CMOS Circuits Come of Age , 2010, IEEE Circuits and Systems Magazine.

[9]  Ali M. Niknejad,et al.  A compact 1V 18.6dBm 60GHz power amplifier in 65nm CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[10]  Yuan-Hung Hsiao,et al.  Design of a $V$ -Band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS , 2016, IEEE Transactions on Microwave Theory and Techniques.

[11]  P. Reynaert,et al.  Design Considerations for 60 GHz Transformer-Coupled CMOS Power Amplifiers , 2009, IEEE Journal of Solid-State Circuits.

[12]  Yi Zhao,et al.  A Wideband, Dual-Path, Millimeter-Wave Power Amplifier With 20 dBm Output Power and PAE Above 15% in 130 nm SiGe-BiCMOS , 2012, IEEE Journal of Solid-State Circuits.

[13]  Heng-Ming Hsu,et al.  Design of an On-Chip Balun With a Minimum Amplitude Imbalance Using a Symmetric Stack Layout , 2010, IEEE Transactions on Microwave Theory and Techniques.

[14]  Baudouin Martineau,et al.  A 60 GHz Power Amplifier With 14.5 dBm Saturation Power and 25% Peak PAE in CMOS 65 nm SOI , 2010, IEEE Journal of Solid-State Circuits.

[15]  Ali M. Niknejad,et al.  A 60 GHz Drain-Source Neutralized Wideband Linear Power Amplifier in 28 nm CMOS , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Anh-Vu Pham,et al.  A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[17]  Yingheng Tang,et al.  Stacking the Deck for Efficiency: RF- to Millimeter-Wave Stacked CMOS SOI Power Amplifiers , 2016, IEEE Microwave Magazine.

[19]  Yu-Jiu Wang,et al.  A 60 GHz 19.6 dBm Power Amplifier With 18.3% PAE in 40 nm CMOS , 2015, IEEE Microwave and Wireless Components Letters.

[20]  M.-C.F. Chang,et al.  60 GHz CMOS Amplifiers Using Transformer-Coupling and Artificial Dielectric Differential Transmission Lines for Compact Design , 2009, IEEE Journal of Solid-State Circuits.

[21]  U.R. Pfeiffer,et al.  A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[22]  Tsung-Yu Yang,et al.  Low-Loss and Broadband Asymmetric Broadside-Coupled Balun for Mixer Design in 0.18-$\mu{\hbox {m}}$ CMOS Technology , 2008, IEEE Transactions on Microwave Theory and Techniques.

[23]  Yi Zhao,et al.  Silicon VLSI catches the millimeter wave , 2011, IEEE Communications Magazine.

[24]  Baoyong Chi,et al.  A W-Band Power Amplifier Utilizing a Miniaturized Marchand Balun Combiner , 2015, IEEE Transactions on Microwave Theory and Techniques.

[25]  Eric Kerherve,et al.  A 1.2V 20 dBm 60 GHz power amplifier with 32.4 dB Gain and 20 % Peak PAE in 65nm CMOS , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[26]  P. Reynaert,et al.  A 60-GHz Power Amplifier With AM–PM Distortion Cancellation in 40-nm CMOS , 2016, IEEE Transactions on Microwave Theory and Techniques.