The congruence subgroup problem for a family of branch groups
暂无分享,去创建一个
[1] Michiel Hazewinkel,et al. Handbook of algebra , 1995 .
[2] Olivier Siegenthaler. Discrete and Profinite Groups Acting on Regular Rooted Trees , 2010 .
[3] Alejandra Garrido,et al. On the congruence subgroup property for GGS-groups , 2016, 1604.03465.
[4] J. Müller,et al. Group Theory , 2019, Computers, Rigidity, and Moduli.
[5] L. Bartholdi,et al. The congruence subgroup problem for branch groups , 2009, 0902.3220.
[6] Laurent Bartholdi,et al. The Twisted Twin of the Grigorchuk Group , 2009, Int. J. Algebra Comput..
[7] R. I. Grigorchuk,et al. Just Infinite Branch Groups , 2000 .
[8] Alejandra Garrido. Abstract commensurability and the Gupta--Sidki group , 2013, 1310.0493.
[9] T. Hall,et al. Journal of Algebra , 1964, Nature.
[10] H. Bateman. Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .
[11] Zoran Sunic,et al. Groups St Andrews 2005: Self-similarity and branching in group theory , 2007 .
[12] H. Lenstra. Profinite Groups , 2022 .
[13] Alejandra Garrido,et al. Multi-GGS Groups have the Congruence Subgroup Property , 2017, Proceedings of the Edinburgh Mathematical Society.
[14] B. M. Fulk. MATH , 1992 .
[15] ScienceDirect,et al. Comptes rendus. Mathématique , 2002 .
[16] R. Grigorchuk,et al. Asymptotic aspects of Schreier graphs and Hanoi Towers groups , 2006 .
[17] A. Shalev,et al. Hausdorff dimension, pro-$p$ groups, and Kac-Moody algebras , 1997 .
[18] Balint Virag,et al. Dimension and randomness in groups acting on rooted trees , 2004 .
[19] Rachel Skipper. A constructive proof that the Hanoi towers group has non-trivial rigid kernel , 2016, 1606.00772.
[20] Olivier Siegenthaler. Hausdorff dimension of some groups acting on the binary tree , 2006, math/0609237.
[21] Laurent Bartholdi,et al. Endomorphic Presentations of Branch Groups , 2022 .