A mean square error test when stochastic restrictions are used in regression
暂无分享,去创建一个
[1] E. Lehmann. Testing Statistical Hypotheses , 1960 .
[2] F. Graybill. An introduction to linear statistical models , 1961 .
[3] H. Theil. On the Use of Incomplete Prior Information in Regression Analysis , 1963 .
[4] John S. Chipman,et al. ON THE USE OF IDEMPOTENT MATRICES IN THE TREATMENT OF LINEAR RESTRICTIONS IN REGRESSION ANALYSIS , 1960 .
[5] A. Goldberger,et al. On Pure and Mixed Statistical Estimation in Economics , 1961 .
[6] A. Zellner. An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias , 1962 .
[7] Some Remarks on Scheffé's Solution to the Behrens-Fisher Problem , 1969 .
[8] G. Judge,et al. Inequality Restrictions in Regression Analysis , 1966 .
[9] T. D. Wallace,et al. Tables for the Mean Square Error Test for Exact Linear Restrictions in Regression , 1969 .
[10] Arnold Zellner,et al. On the Bayesian Estimation of Multivariate Regression , 1964 .
[11] J. Durbin. A Note on Regression When There is Extraneous Information About One of the Coefficients , 1953 .
[12] T. D. Wallace,et al. A Test of the Mean Square Error Criterion for Restrictions in Linear Regression , 1968 .
[13] P. A. V. B. Swamy,et al. On Theil's Mixed Regression Estimator , 1969 .
[14] Some Scheffé-Type Tests for Some Behrens-Fisher-Type Regression Problems , 1965 .
[15] N. Kakwani,et al. Note on the Unbiasedness of a Mixed Regression Estimator , 1968 .