Ca2+ signaling in dendritic spines

[1]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[2]  P. Andersen,et al.  Calcium dependency of synaptic long-lasting potentiation in the hippocampal slice. , 1979, Acta physiologica Scandinavica.

[3]  F. Crick Do dendritic spines twitch? , 1982, Trends in Neurosciences.

[4]  Masao Ito,et al.  Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex , 1982, Neuroscience Letters.

[5]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[6]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[7]  C. Wilson,et al.  Passive cable properties of dendritic spines and spiny neurons , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[9]  H. Wigström,et al.  Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. , 1986, Acta physiologica Scandinavica.

[10]  W. N. Ross,et al.  Mapping calcium transients in the dendrites of Purkinje cells from the guinea‐pig cerebellum in vitro. , 1987, The Journal of physiology.

[11]  J. Wickens Electrically coupled but chemically isolated synapses: Dendritic spines and calcium in a rule for synaptic modification , 1988, Progress in Neurobiology.

[12]  K. Harris,et al.  Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  R. Tsien Fluorescent probes of cell signaling. , 1989, Annual review of neuroscience.

[14]  M. Sakurai Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[15]  CE Jahr,et al.  A quantitative description of NMDA receptor-channel kinetic behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  William R. Holmes,et al.  Is the function of dendritic spines to concentrate calcium? , 1990, Brain Research.

[17]  G. Westbrook,et al.  Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents , 1990, Nature.

[18]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[19]  S. Snyder,et al.  The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment , 1990, The Journal of cell biology.

[20]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[21]  S. Heinemann,et al.  Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition , 1991, Science.

[22]  A. Konnerth,et al.  Intradendritic release of calcium induced by glutamate in cerebellar purkinje cells , 1991, Neuron.

[23]  B. Gähwiler,et al.  Climbing Fibre Responses in Olivo‐cerebellar Slice Cultures. II. Dynamics of Cytosolic Calcium in Purkinje Cells , 1991, The European journal of neuroscience.

[24]  R. Dingledine,et al.  Identification of a site in glutamate receptor subunits that controls calcium permeability , 1991, Science.

[25]  M H Ellisman,et al.  Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons , 1991, The Journal of cell biology.

[26]  M. Farrant,et al.  Excitatory amino acid receptor-channels in Purkinje cells in thin cerebellar slices , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  KM Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;12(8):following table of contents] , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  W. N. Ross,et al.  Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. , 1992, Journal of neurophysiology.

[29]  T. Murphy,et al.  Spontaneous synchronous synaptic calcium transients in cultured cortical neurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  B. Sakmann,et al.  Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit , 1992, Neuron.

[31]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[32]  R. Nicoll,et al.  Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents , 1992, Nature.

[33]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[34]  A. Konnerth,et al.  Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Bert Sakmann,et al.  Heteromeric NMDA Receptors: Molecular and Functional Distinction of Subtypes , 1992, Science.

[36]  K. Khodakhah,et al.  Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes, and peripheral tissues. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Konnerth,et al.  Fractional contribution of calcium to the cation current through glutamate receptor channels , 1993, Neuron.

[38]  E. Kandel,et al.  Structural changes accompanying memory storage. , 1993, Annual review of physiology.

[39]  B. Barbour Synaptic currents evoked in purkinje cells by stimulating individual granule cells , 1993, Neuron.

[40]  C. Koch,et al.  The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  R. Nicoll,et al.  The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation , 1993, Neuron.

[42]  G. Collingridge,et al.  Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. , 1993, The Journal of physiology.

[43]  S. Snyder,et al.  Differential immunohistochemical localization of inositol 1,4,5- trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[45]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[46]  S. Tonegawa,et al.  Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice , 1994, Cell.

[47]  M E Greenberg,et al.  Calcium regulation of gene expression in neuronal cells. , 1994, Journal of neurobiology.

[48]  P. Jonas,et al.  Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels , 1995, Neuron.

[49]  WG Regehr,et al.  A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  T. Stauffer,et al.  Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. , 1995, The Journal of biological chemistry.

[51]  E. Neher,et al.  The use of fura-2 for estimating ca buffers and ca fluxes , 1995, Neuropharmacology.

[52]  J. Connor,et al.  Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice , 1995, Neuron.

[53]  A. Konnerth,et al.  Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons , 1995, Nature.

[54]  W. Denk,et al.  Two types of calcium response limited to single spines in cerebellar Purkinje cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[55]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[56]  D. Linden,et al.  Long-term synaptic depression. , 1995, Annual review of neuroscience.

[57]  Robert S. Zucker,et al.  Postsynaptic Levels of [Ca2+]i Needed to Trigger LTD and LTP , 1996, Neuron.

[58]  N. Hartell,et al.  Strong Activation of Parallel Fibers Produces Localized Calcium Transients and a Form of LTD That Spreads to Distant Synapses , 1996, Neuron.

[59]  Rafael Yuste,et al.  Imaging calcium dynamics in dendritic spines , 1996, Current Opinion in Neurobiology.

[60]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[61]  W. Regehr,et al.  Timing of neurotransmission at fast synapses in the mammalian brain , 1996, Nature.

[62]  I. Llano,et al.  High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. , 1996, The Journal of physiology.

[63]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[64]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[65]  W. Regehr Interplay between sodium and calcium dynamics in granule cell presynaptic terminals. , 1997, Biophysical journal.

[66]  Karl Deisseroth,et al.  Ca2+-dependent regulation in neuronal gene expression , 1997, Current Opinion in Neurobiology.

[67]  C. Armstrong,et al.  Induction of long-term depression and rebound potentiation by inositol trisphosphate in cerebellar Purkinje neurons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[68]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[69]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[70]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[71]  Micha E. Spira,et al.  Low Mobility of the Ca2+ Buffers in Axons of Cultured Aplysia Neurons , 1997, Neuron.

[72]  Coupling between dendritic spines and shafts in cerebellar Purkinje cells , 1997 .

[73]  D. Kullmann,et al.  Extrasynaptic Glutamate Spillover in the Hippocampus: Dependence on Temperature and the Role of Active Glutamate Uptake , 1997, Neuron.

[74]  D. Clapham,et al.  NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation , 1998, Nature Neuroscience.

[75]  George J. Augustine,et al.  Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites , 1998, Nature.

[76]  Arthur Konnerth,et al.  Calcium and Activity-Dependent Synaptic Plasticity , 1998 .

[77]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[78]  M. Berridge Neuronal Calcium Signaling , 1998, Neuron.

[79]  Carol M. Petito The Synaptic Organization of the Brain, 4th Ed , 1998 .

[80]  W G Regehr,et al.  Optical measurement of presynaptic calcium currents. , 1998, Biophysical journal.

[81]  Arthur Konnerth,et al.  A new class of synaptic response involving calcium release in dendritic spines , 1998, Nature.

[82]  E Neher,et al.  Usefulness and limitations of linear approximations to the understanding of Ca++ signals. , 1998, Cell calcium.

[83]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[84]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[85]  D. Debanne,et al.  Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures , 1998, The Journal of physiology.

[86]  B. Sakmann,et al.  Adjacent asparagines in the NR2‐subunit of the NMDA receptor channel control the voltage‐dependent block by extracellular Mg2+ , 1998, The Journal of physiology.

[87]  D. Linden The Return of the Spike Postsynaptic Action Potentials and the Induction of LTP and LTD , 1999, Neuron.

[88]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[89]  W. N. Ross,et al.  Synergistic Release of Ca2+ from IP3-Sensitive Stores Evoked by Synaptic Activation of mGluRs Paired with Backpropagating Action Potentials , 1999, Neuron.

[90]  K. Svoboda,et al.  Synaptic [Ca2+] Intracellular Stores Spill Their Guts , 1999, Neuron.

[91]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[92]  M Segal,et al.  Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. , 1999, Journal of neurophysiology.

[93]  Yasushi Miyashita,et al.  Supralinear Ca2+ Signaling by Cooperative and Mobile Ca2+ Buffering in Purkinje Neurons , 1999, Neuron.

[94]  Daniel Johnston,et al.  Regulation of back-propagating action potentials in hippocampal neurons , 1999, Current Opinion in Neurobiology.

[95]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[96]  M Segal,et al.  Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[97]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[98]  A. Konnerth,et al.  Two-photon Na+ imaging in spines and fine dendrites of central neurons , 1999, Pflügers Archiv.

[99]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[100]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[101]  T. Bliss,et al.  Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines , 1999, Neuron.

[102]  M. Umemiya,et al.  Behaviour of NMDA and AMPA receptor‐mediated miniature EPSCs at rat cortical neuron synapses identified by calcium imaging , 1999, The Journal of physiology.

[103]  Kristen M Harris,et al.  Structure, development, and plasticity of dendritic spines , 1999, Current Opinion in Neurobiology.

[104]  M. Kennedy,et al.  Signal-processing machines at the postsynaptic density. , 2000, Science.

[105]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[106]  Menahem Segal,et al.  Dendritic spines shaped by synaptic activity , 2000, Current Opinion in Neurobiology.

[107]  Li I. Zhang,et al.  Visual input induces long-term potentiation of developing retinotectal synapses , 2000, Nature Neuroscience.

[108]  M. Kano,et al.  Local Calcium Release in Dendritic Spines Required for Long-Term Synaptic Depression , 2000, Neuron.

[109]  D. Tank,et al.  Action potentials reliably invade axonal arbors of rat neocortical neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[110]  K. Tóth,et al.  Differential Mechanisms of Transmission at Three Types of Mossy Fiber Synapse , 2000, The Journal of Neuroscience.

[111]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[112]  R. Yuste,et al.  Mechanisms of Calcium Decay Kinetics in Hippocampal Spines: Role of Spine Calcium Pumps and Calcium Diffusion through the Spine Neck in Biochemical Compartmentalization , 2000, The Journal of Neuroscience.

[113]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[114]  R. Yuste,et al.  Regulation of Spine Calcium Dynamics by Rapid Spine Motility Materials and Methods , 2022 .

[115]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[116]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[117]  M. Poo,et al.  Calcium stores regulate the polarity and input specificity of synaptic modification , 2000, Nature.

[118]  Stephen J. Smith,et al.  Filopodia, Spines, and the Generation of Synaptic Diversity , 2000, Neuron.

[119]  B. Sakmann,et al.  Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex , 2000, The Journal of physiology.

[120]  Rafael Yuste,et al.  From form to function: calcium compartmentalization in dendritic spines , 2000, Nature Neuroscience.

[121]  W. N. Ross,et al.  Inositol 1,4,5-Trisphosphate (IP3)-Mediated Ca2+ Release Evoked by Metabotropic Agonists and Backpropagating Action Potentials in Hippocampal CA1 Pyramidal Neurons , 2000, The Journal of Neuroscience.

[122]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[123]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[124]  D. Feldman,et al.  Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[125]  T. Sejnowski,et al.  Dynamics of dendritic calcium transients evoked by quantal release at excitatory hippocampal synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[127]  M. Bear,et al.  Chemical induction of mGluR5- and protein synthesis--dependent long-term depression in hippocampal area CA1. , 2001, Journal of neurophysiology.

[128]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[129]  A. Fine,et al.  Postsynaptic Calcium Transients Evoked by Activation of Individual Hippocampal Mossy Fiber Synapses , 2001, The Journal of Neuroscience.

[130]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[131]  T. Murphy,et al.  AMPA receptor-mediated miniature synaptic calcium transients in GluR2 null mice. , 2002, Journal of neurophysiology.

[132]  C. Marshall,et al.  Temperature Dependence of Cardiac Na+/Ca2+ Exchanger , 2002, Annals of the New York Academy of Sciences.

[133]  W. N. Ross,et al.  Spatial Segregation and Interaction of Calcium Signalling Mechanisms in Rat Hippocampal CA1 Pyramidal Neurons , 2002, The Journal of physiology.

[134]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[135]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[136]  T. Murphy,et al.  Decoding of synaptic voltage waveforms by specific classes of recombinant high‐threshold Ca2+ channels , 2003, The Journal of physiology.

[137]  Karel Svoboda,et al.  Plasticity of calcium channels in dendritic spines , 2003, Nature Neuroscience.

[138]  J. Weiss,et al.  Heterogeneity of Ca2+-Permeable AMPA/Kainate Channel Expression in Hippocampal Pyramidal Neurons: Fluorescence Imaging and Immunocytochemical Assessment , 2003, The Journal of Neuroscience.

[139]  P. J. Sjöström,et al.  Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors , 2003, Neuron.

[140]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[141]  H. Bading,et al.  Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation , 2003, Current Opinion in Neurobiology.

[142]  Wade G Regehr,et al.  Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids , 2003, Nature Neuroscience.